cyberinfrastructure for the geosciences a community modeling environment: geodynamic integration of...

35
www.geongrid.org CYBERINFRASTRUCTURE FOR THE GEOSCIENCES A community modeling A community modeling environment: geodynamic environment: geodynamic integration of multi-scale integration of multi-scale geoscience data geoscience data Mian Liu Mian Liu 1 , Huai Zhang , Huai Zhang 1,2 1,2 , , Youqing Yang Youqing Yang 1 , Qingsong Li , Qingsong Li 1 , , Yaolin Shi Yaolin Shi 2 1-University of Missouri-Columbia 2-Computational Geodynamic Lab, CAS, China

Upload: annabella-hargrove

Post on 14-Dec-2015

222 views

Category:

Documents


0 download

TRANSCRIPT

www.geongrid.orgCYBERINFRASTRUCTURE FOR THE GEOSCIENCES

A community modeling environment: A community modeling environment: geodynamic integration of multi-scale geodynamic integration of multi-scale

geoscience datageoscience data

Mian LiuMian Liu11, Huai Zhang, Huai Zhang1,21,2, ,

Youqing YangYouqing Yang11, Qingsong Li, Qingsong Li11, Yaolin Shi, Yaolin Shi22

1-University of Missouri-Columbia

2-Computational Geodynamic Lab, CAS, China

www.geongrid.orgCYBERINFRASTRUCTURE FOR THE GEOSCIENCES

Motivation 1:

Exponentially increase of multi-scale observational data that need to be integrated and interpreted within a self-consistent geodynamic framework

www.geongrid.orgCYBERINFRASTRUCTURE FOR THE GEOSCIENCES

EarthScope Instruments

www.geongrid.orgCYBERINFRASTRUCTURE FOR THE GEOSCIENCES

EarthScope Annual Data Volume

Data volumes over next 10 years

GPS: ~7.7 TB

BSM/LSM: ~10.5 TB

Seismic: ~120 TB

www.geongrid.orgCYBERINFRASTRUCTURE FOR THE GEOSCIENCES

Multi-timescales of geoscience data

www.geongrid.orgCYBERINFRASTRUCTURE FOR THE GEOSCIENCES

Motivation 2: • Advance of computer hardware

(especially PC clusters and grid computers) and software engineering have provided unprecedented computing power;

• Data infrastructure have made integrating multiscale data both easy and necessary.

www.geongrid.orgCYBERINFRASTRUCTURE FOR THE GEOSCIENCES

So we built the data So we built the data cyberinfrastructures, now cyberinfrastructures, now

what? what?

Internet

Data Grid

Physical model

HPCC

GEON

www.geongrid.orgCYBERINFRASTRUCTURE FOR THE GEOSCIENCES

Internet

Data Grid

Physical model

HPCC

Free scientists from coding Free scientists from coding to do science, or whatever to do science, or whatever

they do bestthey do best

www.geongrid.orgCYBERINFRASTRUCTURE FOR THE GEOSCIENCES

• Earth Simulator-GeoFEM project • Geoframwork• QuakeSim• SCEC Community Modeling Environment • CIG (Computational Infrastructure for

Geodynamics )

Some current efforts on geodynamic Some current efforts on geodynamic computationscomputations

www.geongrid.orgCYBERINFRASTRUCTURE FOR THE GEOSCIENCES

More than one way to do it …

• Develop specific type of models (e.g., mantle convection);

• Use plug-in modules in a general system to generate specific type of models (wave, fluid, structure, etc.)

www.geongrid.orgCYBERINFRASTRUCTURE FOR THE GEOSCIENCES

Multi-Purpose/Multi-physics Parallel FE Simulator/Platform for Solid Earth

Different finite element model can be plugged into this system

http://geofem.tokyo.rist.or.jp

Example: Earth Simulator- GeoFEM project

www.geongrid.orgCYBERINFRASTRUCTURE FOR THE GEOSCIENCES

Won’t it be nice if we can have a general, flexible

community modeling system? • Not all geological needs can fit into the

pigeonholes;

• Need integration with data CI;

• Scalable for parallel and grid computation

Wouldn’t it be nice if all (or most of) these can be automated?

www.geongrid.orgCYBERINFRASTRUCTURE FOR THE GEOSCIENCES

Examples of commercial FE code generation systems

• PED2D (http://members.aol.com/pde2d)

• FEPG (Finite Element Program Generator) (http://www.fegensoft.com/english/index.htm)

www.geongrid.orgCYBERINFRASTRUCTURE FOR THE GEOSCIENCES

The devil is in the details …The devil is in the details …

PDE2FEMsystem

FEM meshes generator

Geometric modeling of real application

Graph partition (Metis4.0, Pmetis3.0) and Data partition

GES,PDE,CDE, SDE etc. element subroutine generators

GCN, NFE etc. nonlinear algorithms generators

Libs for PDEs, shape functions and other software packages

Theoretical and application documents for users

Server-Client communication system

PFEPG Server administration tools

Common Gateway Interface via www browsers for users

User level communication protocol

MPI

Data structure and optimization

Dynamic load-balancing of each node in parallel computer

Sequential solvers

Krylov subspace iterative solvers and preconditioners

Blas,blacs,pblas,splib,fepglib,

AZsolv, MUMPSArpack, SuperLU

LMDDM and LMDDA algorithm kernel subroutines

www.geongrid.orgCYBERINFRASTRUCTURE FOR THE GEOSCIENCES

disp u vcoor x yfunc funa funb func shap %1 %2gaus %3mass %1load = fu fv $c6 pe = prmt(1)$c6 pv = prmt(2)$c6 fu = prmt(3)$c6 fv = prmt(4)$c6 fact = pe/(1.+pv)/(1.-2.*pv)funcfuna=+[u/x]funb=+[v/y]func=+[u/y]+[v/x]stifdist =+[funa;funa]*fact*(1.-pv)+[funa;funb]*fact*(pv)+[funb;funa]*fact*(pv)+[funb;funb]*fact*(1.-pv)+[func;func]*fact*(0.5-pv)

*es,em,ef,Estifn,Estifv,

*es(k,k),em(k),ef(k),Estifn(k,k),Estifv(kk),

goto (1,2), ityp1 call seuq4g2(r,coef,prmt,es,em,ec,ef,ne) goto 32 call seugl2g2(r,coef,prmt,es,em,ec,ef,ne) goto 33 continue

DO J=1,NMATEPRMT(J) = EMATE((IMATE-1)*NMATE+J)End doPRMT(NMATE+1)=TIMEPRMT(NMATE+2)=DTprmt(nmate+3)=imateprmt(nmate+4)=num

Other element matrix computing SubsPDE expressionContains information of the physical model, such as variables and equations for generating element stiffness matrix.

Fortran Segmentscodes that realize the physical model at element level.

variables

equation

Automated Code Generator

Step 1: From PDE expression to Fortran segments

Segment 1

Segment 2

Segment 3

Segment 4

www.geongrid.orgCYBERINFRASTRUCTURE FOR THE GEOSCIENCES

Step 2: From algorithm expression to Fortran segments

do i=1,k do j=1,k estifn(i,j)=0.0 end do end do do i=1,k estifn(i,i)=estifn(i,i) do j=1,k estifn(i,j)=estifn(i,j)+es(i,j) end do end do

U(IDGF,NODI)=U(IDGF,NODI) *+ef(i)

defistif Smass Mload Ftype emdty lstep 0

equationmatrix = [S]FORC=[F]

SOLUTION Uwrite(s,unod) U

end

Algorithm ExpressionContains information for forming global

stiffness matrix for the model.

Fortran Segmentscodes that realize the physical model at global level.

Stiffness matrix Segment 5

Segment 6

www.geongrid.orgCYBERINFRASTRUCTURE FOR THE GEOSCIENCES

SUBROUTINE ETSUB(KNODE,KDGOF,IT,KCOOR,KELEM,K,KK, *NUMEL,ITYP,NCOOR,NUM,TIME,DT,NODVAR,COOR,NODE,#SUBET.sub *U) implicit double precision (a-h,o-z) DIMENSION NODVAR(KDGOF,KNODE),COOR(KCOOR,KNODE), *U(KDGOF,KNODE),EMATE(300),#SUBDIM.sub *R(500),PRMT(500),COEF(500),LM(500)#SUBFORT.sub#ELEM.subC WRITE(*,*) 'ES EM EF ='C WRITE(*,18) (EF(I),I=1,K)#MATRIX.sub L=0 M=0 I=0 DO 700 INOD=1,NNE ……… U(IDGF,NODI)=U(IDGF,NODI)#LVL.sub DO 500 JNOD=1,NNE ………500 CONTINUE700 CONTINUE ……… return end

Program StencilFortran Segments generated

Step 3: Plug Fortran segments into a stencil, forming final FE program

Segment 1

Segment 2

Segment 4

Segment 3

Segment 5

Segment 6

…………..

www.geongrid.orgCYBERINFRASTRUCTURE FOR THE GEOSCIENCES

Examples

• Western US tectonics

• Deformation of Asian continent

• Stress evolution and strain localization in the San Andreas Fault

www.geongrid.orgCYBERINFRASTRUCTURE FOR THE GEOSCIENCES

A Preliminary Finite Element Model of Active A Preliminary Finite Element Model of Active Crustal Deformation in the Western USCrustal Deformation in the Western US

www.geongrid.orgCYBERINFRASTRUCTURE FOR THE GEOSCIENCES

www.geongrid.orgCYBERINFRASTRUCTURE FOR THE GEOSCIENCES

The Power of GEON Cluster NodeThe Power of GEON Cluster NodeOriginal series model (single CPU)

•Less than 3000 elements

•Three layers in R-direction

•2 min for per time step

Preliminary parallel model (16-nodes, 32 CPUs)

•More than 800,000 unstructured elements

•Major Faults and more deformation zones

•Subduction of Juan de Fuca slab

•21 layers in R-direction

(x 40vertical topographic exaggeration)

www.geongrid.orgCYBERINFRASTRUCTURE FOR THE GEOSCIENCES

Automatic domain decomposition Automatic domain decomposition for parallel computingfor parallel computing

www.geongrid.orgCYBERINFRASTRUCTURE FOR THE GEOSCIENCES

www.geongrid.orgCYBERINFRASTRUCTURE FOR THE GEOSCIENCES

The model now allows simulation of large scale The model now allows simulation of large scale continental deformation with unprecedented detailcontinental deformation with unprecedented detail

www.geongrid.orgCYBERINFRASTRUCTURE FOR THE GEOSCIENCES

The model now allows simulation of large scale The model now allows simulation of large scale continental deformation with unprecedented detailcontinental deformation with unprecedented detail

www.geongrid.orgCYBERINFRASTRUCTURE FOR THE GEOSCIENCES

Ongoing Effort:Ongoing Effort: Toward a new 3D model of Toward a new 3D model of continental deformation in Asiacontinental deformation in Asia

www.geongrid.orgCYBERINFRASTRUCTURE FOR THE GEOSCIENCES

Predicted surface shear stress

www.geongrid.orgCYBERINFRASTRUCTURE FOR THE GEOSCIENCES

Loading the San Andreas Fault by relative PA-NA motion

•Fully 3D•Dynamic•Plastic-viscoelastic•Co-seismic/interseismic cyclesfrom seconds to 104 years•Parallel computing on PC clusters

www.geongrid.orgCYBERINFRASTRUCTURE FOR THE GEOSCIENCES

Comparison of predicted surface velocity and GPS data

www.geongrid.orgCYBERINFRASTRUCTURE FOR THE GEOSCIENCES

Predicted maximum shear stress

www.geongrid.orgCYBERINFRASTRUCTURE FOR THE GEOSCIENCES

www.geongrid.orgCYBERINFRASTRUCTURE FOR THE GEOSCIENCES

Predicted rate of plastic strain energy release outside the SAF

www.geongrid.orgCYBERINFRASTRUCTURE FOR THE GEOSCIENCES

Dream on…

• Integrating the community modeling environment with the geoscience data cyberinfrastructure;

• Grid computation and data integration;

• Automated (optimized?) work flow management (the Kepler system?)

www.geongrid.orgCYBERINFRASTRUCTURE FOR THE GEOSCIENCES

0

0

0

zzzyzxz

yyzyyxy

xxzxyxx

fzyx

fzyx

fzyx

Automatic sourcecode generator

funcfuna=+[u/x] ………funf=+[u/y]+[v/x]

………dist =+[funa;funa]*d(1,1)+[funa;funb]*d(1,2)+[funa;func]*d(1,3)+[funb;funa]*d(2,1)+[funb;funb]*d(2,2)+[funb;func]*d(2,3)+[func;funa]*d(3,1)+[func;funb]*d(3,2)+[func;func]*d(3,3)+[fund;fund]*d(4,4)+[fune;fune]*d(5,5)+[funf;funf]*d(6,6) load = +[u]*fu+[v]*fv+[w]*fw-[funa]*f(1)-[funb]*f(2)-[func]*f(3)-[fund]*f(4)-[fune]*f(5)-[funf]*f(6)

PDEs

Complete source code

FEM Modeling Language

Data Grid (GEON and others)

Physical model

Model results

HPCC

Data =>???

SWF

SWF

www.geongrid.orgCYBERINFRASTRUCTURE FOR THE GEOSCIENCES

Thank you!Thank you!