herschel alpbach ph andre jul2011

38
 The Herschel View of Star Formation Philippe André CEA Laboratoire AIM Paris-Saclay PACS Near Far 

Upload: terbogdan7477

Post on 08-Jul-2015

49 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 1/40

 

The Herschel View of Star Formation

Philippe André

CEA

Laboratoire AIM Paris-Saclay

PACS

Near 

Far 

Page 2: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 2/40

 

  Outline:• Submm observations as a probe of the

initial conditions of star formation• The Herschel Space Observatory:

A revolution in submm imaging• Preliminary results on dense cores

(e.g. CMF vs. IMF)• The role of filaments in the star/core

formation process• Implications for models of star

formation and possible next steps

 Herschel HOBYS survey

Rosette MC 70/160/250 µm composite

Motte et al. 2010 

Page 3: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 3/40

 

Class 0

Class I

Class II

Class III

Prestellar  Parent cloud 

Stellar 

 Blackbody

 Infrared  Excess

   P  r  e  s   t  e   l   l  a  r   P   h  a  s  e

   P  r  o   t

  o  s   t  e   l   l  a  r   P   h  a  s  e

   P  r  e  -   M  a   i  n   S  e  q  u  e  n  c  e   P   h  a  s  e

Time

submm

submm

 

   P  r  o   t  o  s   t  e   l   l  a  r   P   h  a  s  e   P  r  e  s   t  e   l   l  a  r   P   h  a  s  e  Dense

Core

Stellar 

 Blackbody

Formation of solar-type stars

Reasonably well established

evolutionary sequence but physics

of early stages unclear(cf. McKee & Ostriker 2007 vs. Shu et al. 1987) 

 

• Key: Study of the earliest evolutionary

stages initial conditions of SF process

Many open issues: 

 

  What determines the masses of 

forming stars (« IMF ») ?

  What controls the star formation

efficiency and the star formation rate

on global scales ?

 Is star formation rapid or slow ? …

Lada 1987 + André, Ward-Thompson, Barsony 2000 

Cold 

 Blackbody

Cold 

 Blackbody

Stellar 

 Blackbody

Page 4: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 4/40

 

 Protostars in the build-up phase

   0 .   1  p  c

0.1 pc

Gravitationally bound (M ~ MVIR ,  M* = 0)  Massive envelopes (Menv > M*)

The progenitors of protostars

L1544(Starless)

  Greybody

(T = 13K, β = 1.5)IRAM 04191

(Class 0)  Greybody

(T = 9K, β = 2)

Representative

of the collapse

initial conditions

Submm-only objects 

whose SEDs peak

@ λ ~ 100-400 µm

Herschel bandsessential for

luminosity and

temperature determinations

  Prestellar Cores (t < 0)

400 200λ 

 

[µm]Cold SEDs

  Class 0 protostars (t > 0)

Page 5: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 5/40

 

 The prestellar core mass function (CMF) resembles the IMF 

See also: Testi & Sargent 1998;

Johnstone et al. 2001;

Stanke et al. 2006; Alves et al. 2007

Nutter & Ward-Thompson 2007

Motte et al. 2001

 

 

NGC2068 at 850 µm

 

Motte et al. 2001

10’   0 .   5  p  c

Salpeter’s IMF [N (> M) ~ M-1.4] 

C O  c l u m  p s  ( B l i t z  1 9 9 3  )  0.3 Mo

Motte, André, Neri 1998

  The IMF is at least partly determined by

pre-collapse cloud fragmentation (~ 0.1 - 5 M☉

)

• Limitations: Small-number statistics, incompleteness at

low-mass end (?) + assume uniform dust temperature

  Herschel needed to confirm/extend

conclusions toward lower/higher masses

Page 6: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 6/40

 

Importance of the far-infrared and submm

Puget et al. 1996, Hauser & Dwek 2001

CMBOpticalFar-IR

Cosmic Background

WMAP 

 Half of the energy created in the Universe since the CMB is due to star

formation and has been reprocessed into the far-IR and submm 

Page 7: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 7/40

Stars are a fundamental constituent of the Universe

 CMB excluded, stars and star formation dominate the global

energy output of the Universe 

Lagache et al. 2005, ARA&A

Extragalactic Background Light

M82

(starburst galaxy)

Star Formation Starlight

Far-IR Optical

λ rest [µm]   L  o  gν   Lν

   [   L  o

   ]

SEDs of Star-Forming Galaxies

Far-IR

Sanders & Mirabel 1996, ARA&A

140 µm

 

Page 8: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 8/40

  PACS “Blue” 2048 pixels 70 &100 µ

16x16pixels

SPIRE 43 bolometers @ 500 µm

Cutting-edge instrumentsThe Herschel Space Observatory 

Successfully launched by Ariane 5 on 14 May 2009 !

Major far-IR/submm

Observatory (ESA ‘cornerstone’)

3.5 m telescopeLifetime ~ 3.5 yr 

See lecture by T. Passvogel

Pilbratt et al. 2010

Poglitsch et al. 2010

Griffin et al. 2010

 

Page 9: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 9/40

de Graauw, Helmich et al. 2010

Orion KL - HEXOS Herschel/HIFI E. Bergin

Herschel  /HIFI: A revolution in submm spectroscopy

 

Page 10: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 10/40

Probing the chemical complexity of star-forming regions

E. Bergin – HEXOS Herschel/HIFI Bergin et al. 2010

 

Page 11: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 11/40

HERMESS. Oliver et al. 2010

SPIRE

reaches

theconfusionlimit in

< 1 hr 

Herschel deep surveys: star-forming galaxies to z ~ 4

SPIRE 

SCUBA 850 µm HDF

18’’ 

25’’ 

36’’ 

  

Page 12: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 12/40

GOODS-North100/160/250 µm

 

GOODS-South24/100/160µm

 

GOODS-Herschel ( D. Elbaz et al. 2011 )

 PEP (PACS Evolutionary Probe – PI: D. Lutz) ( S. Berta et al. 2010, 2011)

Deepest images of the sky in the 2 GOODS fields : 1818 sources down to

1 mJy at 100 µm, 2.6 mJy@160µm, 5mJy@250µm

Herschel/PACS resolves ~ 2/3 of the cosmic infrared

background at 100/160 µm, i.e. at the peak of the CIB

10’ 

100 µm: 7’’ res.160 µm: 11’’ res.

  

Page 13: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 13/40

Herschel  /PACS 160 µm

VNG Survey (C. Wilson et al.)Spitzer  /MIPS 160 µm

Gordon et al. 2004

M81: A « grand design » spiral galaxy

Probing giant SF clouds (~ 100 pc) in nearby galaxies

30 kpc 

M31 (Andromeda) 

HELGA KP (Fritz et al.) 

Herschel /SPIRE

250 µm 

 

Page 14: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 14/40

Herschel Galactic Surveys

Ophiuchus

OrionCrA

Cepheus

Taurus

Perseus

Polaris

flare

LupusAquilaSerpens

Chamaeleon

 Gould Belt

CoalSack 

Planck

350 µm – 10 mm

⦁ Hi-GAL (Molinari et al. 2010): SPIRE/PACS 70-500 µm //-mode

survey of the Galactic Plane

 Distribution of (massive) star formation in the Milky Way

⦁ Gould Belt survey : SPIRE/PACS 70-500 µm imaging of the bulk of 

nearby (d < 0.5 kpc) molecular clouds, mostly located in Gould’s Belt.

 Census of individual cores and details of the star formation process

Galactic Plane

 

Page 15: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 15/40

HI-GAL image of (part of) the Milky Way (Molinari et al. 2010)

Revealing the structure of Galactic molecular clouds

~  6  0 

 p c 

70/160/350 µm composite PACS/SPIRE // mode

  

Page 16: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 16/40

1) Aquila Rift

star-forming

cloud (d ~ 260 pc)

Red : SPIRE 500 µm

Green : PACS 160 µm 

Blue : PACS 70 µm

~ 3.3o x 3.3o field

André et al. 2010

Könyves et al. 2010

Bontemps et al. 2010 

A&A special issue (vol. 518)

http://oshi.esa.int/

Connecting ISM structure with star formation

Gould Belt Survey 

PACS/SPIRE // mode

  ~    1

   0

  p  c

 

Page 17: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 17/40

~ 5 pc

Structure of the cold ISM prior to star formation

~ 13 deg2 field

2) Polaris flare

translucent cloud

(d ~ 150 pc)

~ 5500 M☉

(CO+HI)Heithausen & Thaddeus ‘90

Miville-Deschênes et al. 2010

Ward-Thompson et al. 2010

Men’shchikov et al. 2010

A&A vol. 518

SPIRE 250 µm image 

Gould Belt Survey

PACS/SPIRE // mode70/160/250/350/500 µm

 

Page 18: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 18/40

 Thermal Continuum Emission from Cold Dust (Td ~ 5-50 K)

• Optically thin dust emission at (sub)mm wavelengths

Direct mass/column density estimates :

• λ ∼ 100-500 µm : good diagnostic of the dust temperature (Td )

Wavelength [µm]1001000 With Herschel , simple dust

temperature estimates based

on greybody fits to the

observed SEDs (5-6 points

between 70 and 500 µm):Iν

~ Bν(Td) τ

ν = Bν(Td) κ

ν Σ

κν = dust opacity  

(eg Hildebrand 83; Ossenkopf & Henning 94)

M =  Sν d2

  Bν (Td) κν 

Σ =  Iν 

  Bν (Td) κν 

S

ν : Integrated flux density

Iν : Surface brightness

Σ : Column density (g cm-2)

  Greybody  (Td = 9.8 K)

  Greybody  (Td = 22.4 K)

ProtostellarcoreStarless

core

 

Page 19: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 19/40

Revealing the structure of one of the nearest

infrared dark clouds (Aquila Main: d ~ 260 pc)

Herschel (SPIRE+PACS)Dust temperature map (K)

   1

   d  e  g

  ~

   4 .   5

  p  c

40 

10 

Herschel (SPIRE+PACS)Column density map (H2/cm2)

1023 

1021 

1022 

30 

20 

W40 

 

Page 20: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 20/40

Wavelet component (H2/cm2)

 Herschel Column density map

1023 

1021 

1022 

1022 

Curvelet component (H2/cm2)

(P. Didelon based on

Starck et al. 2003)

  Dense cores form primarily in filaments

Morphological Component Analysis: 

+ = Cores  Filaments 

 

Page 21: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 21/40

`Compact’ Source Extraction in Aquila 

Spatial distributionof extracted cores

70/160/500 µm composite image3 deg ~ 14 pc 

Aquila entire field: NH2(cm-2)

Starless

=

no PACS 70 µ 

emission

(F70µ <-> Lproto

cf. Dunham,

Crapsi, Evans e.a.

2008 c2d)

541 starless201 YSOs

1023 

1022 

Herschel (SPIRE+PACS) 

Könyves

et al. 2010

5σ level:

~ 1021 cm-2

(with “getsources”: multi-scale, multi-λ core-finding algorithm

Menshchikov et al. 2010-11) 

 

Page 22: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 22/40

Distinguishing between protostellar & starless cores

CB 244: Tdust map & NH contours

Starless=no PACS 70 µm

emission 

(F70µ <-> Lproto

cf. Dunham,

Crapsi, Evans e.a.

2008 Spitzer c2d)

A. Stutz, R. Launhardt et al. 2010

 Herschel EPoS Project (PI: O. Krause)

2: Starless core 

1: Protostar    0 .   2

  p  c

 

Page 23: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 23/40

Examples of starless cores in Aquila

 Herschel NH2map (cm-2)

Radial intensity profiles 

Background

subtracted 

Ellipses: FWHM sizes of 24 starless cores at 250 µm

Könyves et al. 2010, A&A special issue 

Including

background

Core:

 local column density peak 

 simple (convex) shape

 no substructure at Herschel resol. potential single star-forming entity

  

Page 24: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 24/40

At most limited sub-fragmentation within the cores

identified with Herschel  in nearby clouds

Pezzuto, Sadavoy et al., in prep. Maury et al. 2010 

 Herschel ~ 15’’ resolution at λ ~ 200 µm ~ 0.02 pc < Jeans length @ d = 300 pc

 Progenitors of individual stars or binary systems, not “clusters” 

L1448-C: Herschel/SPIRE 250 µm

0.05 pc 

L1448-C: IRAM-PdB interferometer 1.3mm 

500 AU 

2’ 

18’’ 

0.4’’ 

    

Page 25: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 25/40

  > 60%

are likely

prestellar in nature

Könyves et al. 2010

 Positions in mass vs. size diagram, consistent with ~ critical Bonnor-Ebert 

spheroids: MBE = 2.4 R BE cs2/G for T ~ 7-20 K  

Cirrus noise

limit inAquila

Deconvolved FWHM size, R (pc) (at 250 µm)

Motte et al.

(1998,2001)

Most of the Aquila starless cores are self-gravitating

T = 7 K  

T = 20 K  

   M  a  s  s ,

   M    (   M☉

   )

  

Page 26: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 26/40

Confirming the link between the prestellar CMF & the IMF 

Könyves et al. 2010

André et al. 2010

A&A vol. 518

 Good (~ one-to-one) correspondence between core mass and stellarsystem mass: M* = ε Mcore with ε ~ 0.2-0.4 in Aquila The IMF is at least partly determined by pre-collapse cloud/filamentfragmentation (cf. models by Padoan & Nordlund 2002, Hennebelle & Chabrier 2008)

341-541 prestellar

cores in AquilaFactor ~ 2-9 better

statistics than earlierCMF studies (e.g Motte, André, Neri 1998;

Alves et al. 2007)

  Core Mass Function (CMF) in Aquila ComplexIMF

CMF 

   N  u  m   b  e  r  o   f  o   b   j  e  c   t  s  p  e  r  m  a  s  s   b   i  n  :Δ   N   /Δ   l  o

  g   M

Mass (M⨀)0.3 M

⊙ 

System

IMF

Chabrier 2005 

Kroupa

2001 

×ε

 

Page 27: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 27/40

 Herschel GB survey

IC5146 70/250/500µm composite

Arzoumanian

et al. 2011

Prestellar cores form out of 

a filamentary background

~ 5 pc

 

Page 28: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 28/40

  Evidence of the importance of filaments prior to Herschel 

Goldsmith et al. 2008

Taurus

H2 column density from CO(1-0)

FCRAO 

See also:Schneider & Elmegreen 1979;

Abergel et al. 1994; Hartmann 2002;

Hatchell et al. 2005; Myers 2009 …

Peretto & Fuller 2009, 2010

Infrared Dark Clouds

 Spitzer (3.6/8/24 µm) composite

   1

   0

  p  c

   5

  p  c

T. Henning’s lecture on early

stages of massive star formation

 

Page 29: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 29/40

Taurus 

 Herschel Gould Belt survey

SPIRE 500µm

   5

   d  e  g

20 pc 

J. Kirk et al. + P. Palmeirim et al. in prep.

 

Page 30: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 30/40

Herschel reveals a rich network of filaments

in every interstellar cloud

Network of filaments in Aquila

Gould Belt KP (André et al. 2010, Men’shchikov et al. 2010, Arzoumanian et al. 2011)

Non star forming Actively star forming 

Using the ‘skeleton’ or DisPerSE algorithm (Sousbie 2011)

to trace the ridge of each filament

Network of filaments in Polaris

 

Page 31: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 31/40

  Galactic star formation occurs primarily along filamentsHI-GAL image of (part of) the Milky Way (Molinari et al. 2010)

 

Page 32: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 32/40

  Galactic star formation occurs primarily along filaments

Curvatureenhancement

operator

HI-GAL image of (part of) the Milky Way (Molinari et al. 2010)

 

Page 33: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 33/40

Filaments have a characteristic width ~ 0.1 pc

D. Arzoumanian et al. 2011, A&A, 529, L6

Using the ‘skeleton’ or DisPerSE algorithm

(Sousbie 2011)

to trace the ridge of each filamentRadius [pc]

Example of a filament radial profile

Polaris 

   N  u  m   b  e  r  o   f   fi   l  a  m  e  n   t  s  p  e  r   b   i  n

Filament width (FWHM) [pc] 

Statistical distribution of 

widths for 150 filaments

0.1 

0.1 pc  IC5146

Aquila

Polaris

Taurus

PipeDistribution of Jeans lengths

[λJ ~ cs2/(GΣ)]

 

Page 34: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 34/40

Prestellar cores are preferentially found

within the densest filaments 

1023 1022  1021  1022 

0.1

 

Ml  i  n e  /  Ml  i  n e  , c r i   t  

  Un s  t   a b l   e 

  S  t   a b l   e 

Aquila curvelet NH2map (cm-2)Aquila NH2

map (cm-2)

▵ : Prestellar cores - 90% found at NH2> 7x1021 cm-2 <=> Av(back) > 7

 

Page 35: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 35/40

Confirmation of an extinction “threshold” for 

the formation of prestellar cores

Av ~ 7

Background cloud extinction, AV     N  u  m   b  e  r  o

   f  c  o  r  e  s  p  e  r  e  x   t   i  n  c   t   i  o  n   b   i  n  :Δ   N

   /Δ   A   V

Distribution of background extinctionsfor the Aquila prestellar cores

cf. Onishi et al. 1998(Taurus)

Johnstone et al. 2004(Ophiuchus)

In Aquila, ~ 90% of 

the prestellar cores

identified with

 Herschel  are found

above Av ~ 7   NH

2

~ 7 ⨉ 1021cm-2 

  Σ ~ 150 M⊙ pc-2 

See also (for YSOs):Lada, Lombardi, 

Alves 2010 

 

Page 36: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 36/40

Only the densest filaments are gravitationally

unstable and contain prestellar cores (▵)  The gravitational instabilityof filaments is controlled by the

mass per unit length Mline (cf. Ostriker 1964, 

Inutsuka & Miyama 1997):• unstable if Mline > Mline, crit• unbound if Mline < Mline, crit• Mline, crit = 2 cs

2 /G ~ 15 M☉ /pc

for T ~ 10K   Σ threshold Simple estimate:  Mline∝ NH2 x Width (~ 0.1 pc)Unstable filaments highlighted

in white in the NH2 map

1021  1022 

Aquila curvelet NH2

map (cm-2)

 S  t   a b l   e 

 Ml  i  n e  /  Ml  i  n e  , c r i   t  

0.1 

 Un s  t   a b l   e 

André et al. 2010, A&A Vol. 518

~ 150 M☉ /pc2 

 

Page 37: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 37/40

Importance of the star formation threshold

on (extra)galactic scales

ΣSFR ∝ Σgas   for Σgas > ΣthresholdHeiderman et al. 2010 Lada et al. 2010

See also

Gao & Solomon 2004

for external galaxies 

Heiderman, Evans et al. 2010 

Star formation rate vs. Gas surface density

Σth ~ 150 M⊙pc-2

AV

~ 7-8 

 

Page 38: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 38/40

Magnetically-criticalcondensed sheet,

fragmented into filaments

and cores (e.g. Nakamura &

Li 2008; Basu, Ciolek etal. ’09) 

Magnetically-regulatedstar formation

Turbulent

fragmentation 

Gravity-dominatedcloud/star formation

Filaments and cores

from shocks in large-

scale, supersonicturbulence(e.g. Padoan et al. 2001;

MacLow & Klessen ’04) 

Filaments from global

cloud collapse

Cores from local gravity(e.g. Burkert & Hartmann

‘04; Heitsch et al. ’08;

also Nagai et al. ‘98 )

Bate, Bonnell et al. 2003 … 

Origin of interstellar filaments? 3 possible paradigms

   

Page 39: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 39/40

 The turbulent fragmentation picture accounts for the

~ 0.1 pc characteristic width of interstellar filaments:

~ sonic scale of ISM turbulence

Linewidth-Size relation in clouds 

(Larson 1981)

Distribution of widths for 150 filaments

   N  u  m   b  e  r  o   f   fi   l  a  m  e  n   t  s  p  e  r   b   i  n

Filament width (FWHM) [pc] 0.1 

0.1 pc  IC5146

Aquila

Polaris

Taurus

Pipe

Distribution of 

Jeans lengths

Log (Size) [pc]     L  o  g   (   V  e   l  o  c   i   t  y   D   i  s  p  e  r  s   i  o  n   )   [   k  m   /  s   ]

0.1 pc

Sonic scale 

σV(L)∝ L0.5 

(Arzoumanian et al. 2011)  Corresponds to the typical thickness λ 

of shock-compressed structures/filaments

in the turbulent fragmentation scenario λ ~  L/ M(L)2 ~ 0.1 pc

compression ratio (HD shock) 

Simulations of turbulent fragmentation 

Padoan, Juvela et al. 2001 

 

Page 40: Herschel Alpbach Ph Andre Jul2011

5/9/2018 Herschel Alpbach Ph Andre Jul2011 - slidepdf.com

http://slidepdf.com/reader/full/herschel-alpbach-ph-andre-jul2011 40/40

Conclusions

First results from Herschel on star formation are very promising:

  Confirm the close link between the prestellar CMF and the

IMF, although the whole Gould Belt survey will be required to

fully characterize the nature of this link.

  Suggest that core formation occurs in two main steps:

1) Filaments form first in the cold ISM, probably as a result of the

dissipation of MHD turbulence; 2) The densest filaments then

fragment into prestellar cores via gravitational instability above

a critical extinction threshold at AV ~ 7

 Σth ~ 150 M☉ pc

-2

  Spectroscopic and polarimetric observations required to clarify the

roles of turbulence, B fields, gravity in forming the filaments.