iida laboratory research projects 2005

7
Iida Laboratory Research Projects 2005 Keio University Faculty of Science & Technology Department of System Design Engineering School of Integrated Design Engineering 3-14-1 Hiyohsi, Kouhoku-ku, Yokohama-cit y, Kanagawa, 223-8522 Japan, Yagami Campus 2 5-311 TEL: 045-563-1151 (Ext. 43026) FAX: 045-560-3232 2005/6/27

Upload: stu

Post on 30-Jan-2016

45 views

Category:

Documents


0 download

DESCRIPTION

Iida Laboratory Research Projects 2005. 2005/6/27. Keio University Faculty of Science & Technology Department of System Design Engineering School of Integrated Design Engineering. 3-14-1 Hiyohsi, Kouhoku-ku, Yokohama-city, Kanagawa, 223-8522 Japan, Yagami Campus 25-311 - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Iida Laboratory Research Projects  2005

Iida Laboratory Research Projects

2005

Keio University Faculty of Science & Technology

Department of System Design Engineering

School of Integrated Design Engineering

3-14-1 Hiyohsi, Kouhoku-ku, Yokohama-city,

Kanagawa, 223-8522 Japan, Yagami Campus 25-311

TEL: 045-563-1151 (Ext. 43026)

FAX: 045-560-3232

2005/6/27

Page 2: Iida Laboratory Research Projects  2005

Study on Local Air Pollution Using On-board Measurement System

M2 Norifumi Takada, M1 Mio Tanaka, B4 Yumi Kawakami

KEIOKEIO    UNIVERSITYUNIVERSITY

Analysis of Local air pollution

Research Projects and Member

Development of the Control System Using EGR for the HCCI Engine Running on DME

M2 Masato Ikemoto, M1 Tetsuo Omura, B4Yoshihiko Kanoto

Chemiluminescence Measurement of HCCI Combustion

M2 Satoshi Ketadani, M1 Daisei Nagaoka, B4Satoshi Yamaoki

The Study on Auto-ignition and Combustion Process of the Fuel Blended with Methane and DME in HCCI Engine

D3 Susumu Sato, M2 Daisuke Yamashita,

M1 Junpei Ozaki, B4 Azusa Ito

Diesel Spray Combustion in a HCCI Using a RCM

D3 Ock Taeck Lim, B4 Akihito Taiji, B4 Hiroaki Nakano

GX team

LEV team

YAM team

OAE team

RCM team

Page 3: Iida Laboratory Research Projects  2005

KEIOKEIO    UNIVERSITYUNIVERSITY

Development of the Control System Using EGR for the HCCI Engine Running on DME

Masato Ikemoto, Tetsuo Omura, Yoshihiko Kanoto

2005 IIDA LABORATORY2005 IIDA LABORATORY

Air

Heat Exchanger

Fuel

ExhaustGas

ExhaustGas

LaminarFlowMeter

Mass FlowController Unit External

EGR(Cold)

ExternalEGR

(Cold)

B

D

InternalEGR(Hot)

InternalEGR(Hot)

DME

C

A

Controller

PressureSensor

DesiredValue

-+

Calculator

Controller

PressureSensor

DesiredValue

-+

Calculator

A :Ext. EGR ThrottleB :Int. EGR ThrottleC :Ex. Press. ValveD :Ext. EGR Valve

PremixturePremixtureCOCH

H

H

H

H

H COCH

H

H

H

H

H

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8Indicated Mean Effective Pressure MPa

Ind

ica

ted

Th

erm

al

Eff

icie

nc

y

i%

DENYODiesel

DENYOGasoline

HONDAGasoline

AchievementPoint

Original Engine

ObjectiveObjective

Cam L2.1

Cam L1.6Cam L1.0

Cam L0 (Normal)

Cam L2.1=9.12

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1

0.8 1 1.2 1.4 1.6

1000/T0 1000/K

Ign

itio

n D

ela

y m

s

MethaneGRI Mech 3.0Species : 53Reactions : 325

n-ButaneKojima’s ModelSpecies : 143Reactions : 473

DMECurran’s ModelSpecies : 79Reactions : 336

P0=4.0 MPaV=Constant=1.0=0 %Calculation

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

- 1 0

0

1 0

2 0

3 0

4 0

5 0

6 0

- 1 8 0 - 1 2 0 - 6 0 0 6 0 1 2 0 1 8 0C r a n k A n g l e A T D C d e g

Ga

s T

em

pe

ratu

re T(

)K

R.H

.R.d

Q/d

J

/de

g

D M EG X 3 4 0 K 1 m i x = V a r i o u s I I E G = V a r i o u s E E G R = 0 v o l % N e = 1 5 0 0 r p m = 8 . 0E x p e r i m e n t

I E G R = 5 2 . 9 %T I V C = 4 7 4 . 5 K

I E G R = 7 0 . 9 %T I V C = 5 0 6 . 8 K

I E G R = 5 2 . 9 %T I V C = 4 7 4 . 5 K

I E G R = 7 0 . 9 %T I V C = 5 0 6 . 8 K

1

κ

IVCIVC V

)θ(VT)θ(T

C a l c u l a t i o n w i t hE q . o f A d i a b a t i c C h a n g e

T H T R = 8 7 9 ± 1 9 KT L T R = 7 4 2 ± 1 3 KT H T R = 8 7 9 ± 1 9 KT L T R = 7 4 2 ± 1 3 K C a l c u l a t i o n

T I V C = 3 0 0 K

Ignition TimingInternal EGR

External EGR

Premixture(=1.0)

Temperatureat Comp. Start

Maximum GasTemperature

CombustionReaction Speed

Control ObjectControl Factor

CombustionEfficiency

Avoidance ofKnocking

IMEP

eq.(3)

eq.(4)

eq.(2) eq.(1)

ref.(4)

Fig.1 DME Structure, Ignition Delay Fig.2 Proposed Control System

Fig.3 Temperature, R.H.R. History Fig.4 Engine Performance

Purposes

Results

・ To develop Homogeneous Charge Compression Ignition (HCCI) engine running on Di-Methyl Ether(DME)・ To construct the control system using EGR which resolve the problem of HCCI combustion, ignition timing, knocking and combustion efficiency

・ DME is suitable fuel for the HCCI engine in terms of combustion characteristics・ internal EGR and external EGR are effective to control ignition timing and combustion reaction speed・ Developed DME HCCI engine gets high thermal efficiency but much lower IMEP

Page 4: Iida Laboratory Research Projects  2005

Exhaust gas

・Data logger

Smoke meter

Engine NOx sensor

GPS receiverGPS satellite

Video camera O2 sensor

・・Data logger

Smoke meter

Engine NOx sensor

GPS receiverGPS satellite

Video camera O2 sensor

Study on Local Air Pollution Using On-board Measurement System

Norifumi Takada, Mio Tanaka, Yumi Kawakami

KEIOKEIO    UNIVERSITYUNIVERSITY

Where?What affect Exhaust gas?How much gases were exhausted?

NOxPMCO2

N

0 200m

STARTGOAL

To south gate

To west gate

East gate

2s

2001-0904-1605Seika Univ Route in ChinaDriver:趙英Payload:Full(750kg)Engine condition :HOT

:0.05:0.02

ENOx,t g/ s

N

0 200m

STARTGOAL

To south gate

To west gate

East gate

2s

2001-0904-1605Seika Univ Route in ChinaDriver:趙英Payload:Full(750kg)Engine condition :HOT

:0.05:0.02

ENOx,t g/ s:0.05:0.02

ENOx,t g/ s

Video image

Driving test at Seika Univ. in China

Previous researches・ Relationships differences of drivers ,vehicles and exhaust emissions.・ Behavior of exhaust emissions around inter section  ・ Relationship classification of roads(wide and narrow) and exhaust emissions.  ・ Estimation of emission factor by vehicle speed and travel resistanceSponsored by

2000~2003 National Institute for Environmental Studies, 2004~2006  Aid of environmental Studies from NISSAN

0

1

2

3 P M e m i s s i o n f a c t o r g / k m

0

1

2

3

0

1

2

3 P M e m i s s i o n f a c t o r g / k m0

6 0 08 0 0

1 0 0 0

2 0 04 0 0

C O 2 e m i s s i o n f a c t o r g / k m

0

6 0 08 0 0

1 0 0 0

2 0 04 0 0

0

6 0 08 0 0

1 0 0 0

2 0 04 0 0

C O 2 e m i s s i o n f a c t o r g / k m0

2 0

3 0

4 0

1 0

N O x e m i s s i o n s f a c t o r g / k m

0

2 0

3 0

4 0

1 0

0

2 0

3 0

4 0

1 0

N O x e m i s s i o n s f a c t o r g / k m

0123

- 2- 3

- 1

A c c e l e r a t i o n m / s 2

0123

- 2- 3

- 10123

- 2- 3

- 1

A c c e l e r a t i o n m / s 2

0

2 0

3 0

4 0

1 0

V e h i c l e s p e e d k m / h

0

2 0

3 0

4 0

1 0

0

2 0

3 0

4 0

1 0

V e h i c l e s p e e d k m / h

C l u t c h

3 r d

4 t h

2 n d

G e a r p o s i t i o n

C l u t c h

3 r d

4 t h

2 n d

C l u t c h

3 r d

4 t h

2 n d

G e a r p o s i t i o n

O F F

O N B r a k e O N / O F F

O F F

O N

O F F

O N B r a k e O N / O F F0

2 0

3 0

4 0

1 0

A c c e l e r a t o r m m

0

2 0

3 0

4 0

1 0

0

2 0

3 0

4 0

1 0

A c c e l e r a t o r m m

0 5 0 1 0 0 1 5 0 2 0 0D i s t a n c e m

0 5 0 1 0 0 1 5 0 2 0 0D i s t a n c e m

0.05 g-NOx/s0.02 g-NOx/s

2002-12-7 Yokohama Urban RouteDriver : Y.Takada Payload : 1000kgEngine condition : HOT

Analysis of Local air pollution

Intensive pollution

2005 IIDA LABORATORY2005 IIDA LABORATORY

Page 5: Iida Laboratory Research Projects  2005

KEIOKEIO    UNIVERSITYUNIVERSITY

Background

Object : Investigation of the effect of residualgas on HCCI combustion

Method : Spatial structure of HCCIcombustion flame is investigated usingtwo dimensional luminescencemeasurement with 4-stroke   engine and Rapid Compression Machine (RCM).

Object and Method

Experimental apparatusThe engine with residual gas:4-stroke optical accessibly engine The engine Without residual gas:RCM

Result (two dimensional images and histogram)

0 64 128 192 256

Luminescence Intensity A.U.

0

0.4

0.8

1.2

1.6

2

Pix

els

/Pix

els

%

0 64 128 192 256Luminescence Intensity A.U.

0

0.4

0 .8

1 .2

1 .6

2

Pix

el/

Pix

el

%

4-stroke engine with residual gas RCM without residual gas

It was appeared that the fluctuation of luminescence intensity was more equal than in the case with residual gas.

Framing camera

Combustion Chamber

Mirror

Framing camera

mirror

fuze box

Combustionchamber

Accumulator chamber

Analysis of the effect of residual gas on spatial structure of HCCI combustion flame using two dimensional luminescence measurement

DME/Air =0.32=7.2600rpmI.I. Gain 500Exposure time 0.55ms

DME/Air =0.24=14.6Compression speedabout 300rpmI.I. Gain 5000Exposure time 1ms

Satoshi Ketadani, Daisei Nagaoka, Satoshi Yamaoki

I n t a k e v a l v e E x h a u s t v a l v e

E x h a u s t G a sA i r

I n h o m o g e n e i t y o f t e m p e r a t u r e a n d g a s c o m p o s i t i o n g e n e r a t e d b y r e s i d u a l g a s

I n h o m o g e n e i t y o f f u e l c o n c e n t r a t i o n g e n e r a t e d b y d i f f e r e n c e

o f f u e l s u p p l y m e t h o d

I n h o m o g e n e i t y o f t e m p e r a t u r e g e n e r a t e d b y h e a t t r a n s f e r o n t h e w a l l

f u e l

2005 IIDA LABORATORY2005 IIDA LABORATORY

Page 6: Iida Laboratory Research Projects  2005

KEIOKEIO    UNIVERSITYUNIVERSITY

Background and ObjectiveA Diesel combustion has

serious problem ; PM, NOx etc

Rapid Compression Machine

2

4

6

8

10

12

In-c

yli

nd

er

Ga

s P

res

su

re P

c M

Pa

0

20

40

60

80

100

Co

mb

us

tio

n E

ffic

ien

cy

c%

C o m b u sitio n E ffic ien cy

Pressu re

0 0.02 0 .04 0 .06 0.08 0.1 0 .12 0.14 0 .16E qu iv a lenc e ra tio

1x10 -12

1x10 -11

1x10 -10

1x10 - 9

1x10 - 8

1x10 - 7

1x10 - 6

1x10 - 5

1x10 - 4

1x10 - 3

1x10 - 2

1x10 - 1

1x10 0

Mo

le F

rac

tio

n m

ol/

mo

l

4 00

600

800

1000

1200

1400

1600

In-c

yli

nd

er

Ga

s T

em

pe

ratu

re T

C K

C H 3OC H 3

O 2

H 2O

CO

C O 2Tem p .

H C H O

H 2O 2

O H

2

4

6

8

10

12

In-c

yli

nd

er

Ga

s P

res

su

re P

c M

Pa

0

20

40

60

80

100

Co

mb

us

tio

n E

ffic

ien

cy

c%

C o m b u sitio n E ffic ien cy

Pressu re

0 0.02 0 .04 0 .06 0.08 0.1 0 .12 0.14 0 .16E qu iv a lenc e ra tio

1x10 -12

1x10 -11

1x10 -10

1x10 - 9

1x10 - 8

1x10 - 7

1x10 - 6

1x10 - 5

1x10 - 4

1x10 - 3

1x10 - 2

1x10 - 1

1x10 0

Mo

le F

rac

tio

n m

ol/

mo

l

4 00

600

800

1000

1200

1400

1600

In-c

yli

nd

er

Ga

s T

em

pe

ratu

re T

C K

C H 3OC H 3

O 2

H 2O

CO

C O 2Tem p .

H C H O

H 2O 2

O H

3.00 ms 3.83 ms 4.93 ms 6.04 ms 7.14 ms 7.97 ms 9.07 ms 9.90 ms

2.91 ms 4.95 ms 7.00 ms3.93 ms 5.98 ms 8.03 ms 10.1 ms

2.90 ms 4.12 ms 5.10 ms 6.07 ms 7.05 ms 8.02 ms 9.00 ms 9.73 ms

1.11 ms 1.37 ms 1.63 ms 1.88 ms 2.14 ms 2.39 ms0 ms

1.68 ms1.12 ms 1.44 ms 1.94 ms 2.17 ms 2.41 ms0 ms

1.07 ms 1.34 ms 1.62 ms 1.90 ms 2.17 ms 2.45 ms0 ms

A B C D E F G H I J K L M N O

Air+JIS2

DME/AirФ=0.01+JIS2

DME/AirФ=0.02+JIS2

9.05 ms

3.00 ms 3.83 ms 4.93 ms 6.04 ms 7.14 ms 7.97 ms 9.07 ms 9.90 ms

2.91 ms 4.95 ms 7.00 ms3.93 ms 5.98 ms 8.03 ms 10.1 ms

2.90 ms 4.12 ms 5.10 ms 6.07 ms 7.05 ms 8.02 ms 9.00 ms 9.73 ms

1.11 ms 1.37 ms 1.63 ms 1.88 ms 2.14 ms 2.39 ms0 ms

1.68 ms1.12 ms 1.44 ms 1.94 ms 2.17 ms 2.41 ms0 ms

1.07 ms 1.34 ms 1.62 ms 1.90 ms 2.17 ms 2.45 ms0 ms

A B C D E F G H I J K L M N O

Air+JIS2

DME/AirФ=0.01+JIS2

DME/AirФ=0.02+JIS2

9.05 ms

0

20

40

60

80

100

Fu

el In

ject

ion

P

ress

ure

Pinj M

Pa

- 6 - 4 - 2 0 2 4 6 8 1 0 1 2T i m e A f t e r I n j e c t i o n S t a r t tai m s

880

900

920

940

960

In-c

ylin

der

Gas

Tem

per

atu

re Tc

K

A B CDEFG H I J K L M N O

0

20

40

60

80

100

Fu

el In

ject

ion

P

ress

ure

Pinj M

Pa

- 6 - 4 - 2 0 2 4 6 8 1 0 1 2T i m e A f t e r I n j e c t i o n S t a r t tai m s

880

900

920

940

960

In-c

ylin

der

Gas

Tem

per

atu

re Tc

K

0

20

40

60

80

100

Fu

el In

ject

ion

P

ress

ure

Pinj M

Pa

- 6 - 4 - 2 0 2 4 6 8 1 0 1 2T i m e A f t e r I n j e c t i o n S t a r t tai m s

880

900

920

940

960

In-c

ylin

der

Gas

Tem

per

atu

re Tc

K

A B CDEFG H I J K L M N O

•Grateful effect of reducing PM, NOx using intermediate as like H2O2, HCHO

HCCI-DI

H2O2,HCHO,CO, etc.

Piston Cylinder

Accumulator BDC TDCFuse Box

Stroke 692.3mm

Quartz Window

Mirror

Quartz Window

Exhaust Gas

HeatExchanger

Silica Gel

Orifice

Syringe Pump Mixture

Chamber

Intake Air

Fuel

Driving AirOil Damper

Trigger

Aluminum Plate

Combustion ChamberDriving Parts

Mixture

Pre-mixture

Intermediate HCCI

CHEMKIN Result

•Using CHEMKIN, we can presumes how much is the intermediate of HCCI combustion process

• duplicated a single diesel type compression cycle• No effect of flow, residual gas and cycle by cycle • Direct Photograph with Optical accessible head

Conclusion

•There are H2O2, HCHO at DME Φ=0.01 and

0.02 HCCI combustion.•The ignition delay and flame existence

at DME Φ=0.02 is about 1.5ms delay and

about 0.75ms at DME Φ=0.01

2005 IIDA LABORATORY2005 IIDA LABORATORY

DME/Air, tinj=285ms,P0=0.1MPa, T0=353K

•Inject at inhomogeneous condition, Change of Injection timing•Change HCCI fuel ; Butane, n-Heptane, iso-Octane, DME

This year Project

Diesel Spray Combustion in a HCCI Using a RCM Ock Taeck Lim, Akihito Taiji, Hiroaki Nakano

Page 7: Iida Laboratory Research Projects  2005

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5

knocking

miss firing

CH4/DME/AirPin=0.1MPaTin=300±8KNe=960rpm=21.6Experiment

Equal inletcalories

▲ knocking●HCCI combustion ×miss firing

HCCI combustion

A

DM

E-b

ased

Eq

uiv

ale

nce R

ati

o DME

Methane-based Equivalence Ratio CH4

B

C

2005 IIDA LABORATORY2005 IIDA LABORATORY

We make the same experiment by using CH4/n-C4H10, CH4/CO2, CH4/H2 etc.

Chargeamp

Fair

DME

Methane

Ffuel

Air

Engine

Ffuel

Tin TexP

DynamoMeter

Exhaust

80 12515001595

Exhaust

Crank Angleamp

A/D dataLogger PC

SurgeTank

ControlUnit

FlowOperator

Encoder

CO,CO2

Meter

THCMeter

NOxMeter

Mass Flow Controller

ControlUnit

Laminar Flow meter

Purpose

Experiment system

Results

The Study on Auto-ignition and Combustion Process of the Fuel Blended with Methane and DME in HCCI Engine

Plan

We use the Fuel blended with Methane and DME and search the effect of mixing ratio on ignition temperature and ignition timing .

・ Ignition temperature became higher ( lower ) by increasing Methane ( DME ) ratio. ・ Ignition timing and RHR peak timing became later ( faster ) by increasing Methane ( DME ) ratio. ・ Peak pressure became lower by delaying RHR peak timing.

Pmax: Peak pressure , Tig: Ignition temperature , ig: Ignition timing , RHR_max: RHR peak timing

OC CH H

H

H H

H

CH

H

H

H

DMElarge

large

CH4

Pressure Temperature RHR

-50

0

50

100

150

200

RH

R [

J/d

eg]

-50

0

50

100

150

200

RH

R [

J/d

eg]

-30 -20 -10 0 10 20 30Crank Angle [deg]

-50

0

50

100

150

200

RH

R [

J/d

eg]

-30 -20 -10 0 10 20 30Crank Angle [deg]

400

800

1200

1600

2000

Tem

per

atu

re [

K]

400

800

1200

1600

2000

Tem

per

atu

re [

K]

400

800

1200

1600

2000

Tem

per

atu

re [

K]

0

2

4

6

8

10

Pre

ssu

re [

MP

a]

0

2

4

6

8

10

Pre

ssu

re [

MP

a]

-30 -20 -10 0 10 20 30Crank Angle [deg]

0

2

4

6

8

10

Pre

ssu

re [

MP

a]

A CH4=0 DME=0.355

B CH4=0.16 DME=0.18

C CH4=0.25 DME=0.1

Pmax=8.0MPa

Pmax=7.9MPa

Pmax=6.4MPa

A CH4=0 DME=0.355

B CH4=0.16 DME=0.18

C CH4=0.25 DME=0.1

A CH4=0 DME=0.355

B CH4=0.16 DME=0.18

C CH4=0.25 DME=0.1

Tig=732K

Tig=689K

Tig=663K ig=-28deg

ig=-26deg

ig=-21deg

RHR_mac=-19deg

RHR_mac=-9deg

RHR_mac=5deg

KEIOKEIO    UNIVERSITYUNIVERSITY

Susumu Sato, Daisuke Yamashita, Junpei Ozaki, Azusa Ito