lightweight intermetallics for hydrogen storagelightweight intermetallics for hydrogen storage j.-c....

14
Lightweight Intermetallics for Hydrogen Storage J.-C. Zhao , Jun Cui, Yan Gao, John Lemmon, Tom Raber, Job Rijssenbeek, Gosia Rubinsztajn, Grigorii Soloveichik GE Global Research Niskayuna, NY Project ID # STP27 This presentation does not contain any proprietary or confidential information May 23-24, 2005 – A Member of the DOE Metal Hydride Center of Excellence –

Upload: others

Post on 05-Jun-2020

29 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lightweight Intermetallics for Hydrogen StorageLightweight Intermetallics for Hydrogen Storage J.-C. Zhao, Jun Cui, Yan Gao, John Lemmon, Tom Raber, Job Rijssenbeek, Gosia Rubinsztajn,

Lightweight Intermetallics for Hydrogen Storage

J.-C. Zhao, Jun Cui, Yan Gao, John Lemmon, Tom Raber,

Job Rijssenbeek, Gosia Rubinsztajn, Grigorii Soloveichik

GE Global ResearchNiskayuna, NY

Project ID # STP27This presentation does not contain any proprietary or confidential information

May 23-24, 2005

– A Member of the DOE Metal Hydride Center of Excellence –

Page 2: Lightweight Intermetallics for Hydrogen StorageLightweight Intermetallics for Hydrogen Storage J.-C. Zhao, Jun Cui, Yan Gao, John Lemmon, Tom Raber, Job Rijssenbeek, Gosia Rubinsztajn,

2

Timeline• Project start date: FY05• Project end date: FY09• Percent complete: New Project

Budget• Expected Total Project Funding:

Phase I - 3 years: $2.00M– DOE Share: $1.60M– GE Share: $0.40M

Phase II - 2 years: $1.47M– DOE Share: $1.18M– GE Share: $0.29M

• Funding for FY05: $450K (DOE), $112K (GE)

BarriersRight heat of formation Absorption / desorption kineticsHydrogen capacity and reversibility

TargetsGravimetric capacity: > 6%Volumetric capacity: > 0.045 kg H2/LMin/max desorption temp: -30 / 85°C

Partners• Member of DOE MHCoE

• Collaborations with MHCoE partners on modeling and characterization

• Member of the Coordinating Council of DOE MHCoE

GE Program Overview

Page 3: Lightweight Intermetallics for Hydrogen StorageLightweight Intermetallics for Hydrogen Storage J.-C. Zhao, Jun Cui, Yan Gao, John Lemmon, Tom Raber, Job Rijssenbeek, Gosia Rubinsztajn,

3

Discover and develop a high capacity (> 6 wt.%) lightweight hydride that is practical and inexpensive

for reversible vehicular hydrogen storage and delivery systems, capable of meeting or exceeding

the 2010 DOE/FreedomCAR targets.

• Develop a high-efficiency combinatorial synthesis and high-throughput screening methodology for metal hydride discovery

• Identify hydrides from combinatorial samples and validate them through gram-quantity sample tests

FY05 Goals

GE Program Objective

Page 4: Lightweight Intermetallics for Hydrogen StorageLightweight Intermetallics for Hydrogen Storage J.-C. Zhao, Jun Cui, Yan Gao, John Lemmon, Tom Raber, Job Rijssenbeek, Gosia Rubinsztajn,

4

Materials Discovery Acceleration: Design for Six Sigma coupled with…• Materials Expertise: Development & Processing • High Throughput Screening (HTS): Composition Design Space• Characterization: Composition, Microstructure & Performance • System Performance: Characterization & Predictive Modeling• Focused multi-disciplinary team

GE Approach

Page 5: Lightweight Intermetallics for Hydrogen StorageLightweight Intermetallics for Hydrogen Storage J.-C. Zhao, Jun Cui, Yan Gao, John Lemmon, Tom Raber, Job Rijssenbeek, Gosia Rubinsztajn,

5

Thermodynamics

SafetyDiffusion

Reaction Path

Concepts

Modeling

Combi& HTS

Synthesis &Characterization New Hydrides

0

5

10

15

20

25

0 0.25 0.5 0.75 1 1.25 1.5wt%

Pres

sure

(atm

)

Li

N

Mg

MgN6

Mg3N2

Li3N

LiN3

LiMgN

Li

N

Mg

MgN6

Mg3N2

Li3N

LiN3

LiMgN

System Requirements

John DeereTargets

DOE 2015 Goal

DOE 2010 Goal

0 100 200 300

2

0

4

6

8

10

12

14

Temperature (°C)

Rev

ersi

ble

stor

age

capa

city

(wt %

H2)

LaNi5

NaAlH4 Mg2NiH4

MgH2

LiNH2

Limit of demonstrated reversibility

LiBH4+MgH2

400

MgH2+2LiNH2

(assume 50% debit for system)

John DeereTargets

DOE 2015 GoalDOE 2015 Goal

DOE 2010 GoalDOE 2010 Goal

0 100 200 300

2

0

4

6

8

10

12

14

Temperature (°C)

Rev

ersi

ble

stor

age

capa

city

(wt %

H2)

LaNi5LaNi5

NaAlH4NaAlH4 Mg2NiH4

MgH2

Mg2NiH4Mg2NiH4

MgH2MgH2

LiNH2

Limit of demonstrated reversibility

LiBH4+MgH2

400

MgH2+2LiNH2

(assume 50% debit for system)

GE Program Objective

GE Metal Hydride Discovery Process

(potential)

(potential)(potential)

Page 6: Lightweight Intermetallics for Hydrogen StorageLightweight Intermetallics for Hydrogen Storage J.-C. Zhao, Jun Cui, Yan Gao, John Lemmon, Tom Raber, Job Rijssenbeek, Gosia Rubinsztajn,

6

GE Lightweight Intermetallics Approach• Focus:

Lightweight aluminides & silicides of Li, Mg, and Na (potential to 6 wt.%)

• Opportunity:Many intermetallic compounds exist in aluminide and silicide systems

• Develop & Validate:Combinatorial synthesis andhigh-throughput screening methodologies for hydride discovery in the target temperature – pressure – kinetics design space

SiAl

Li

LiAlLi3Al2

Li4Al9Li22Si5

Li13Si4

Li7Si3Li12Si7

Al2Li3Si2

AlLiSi

AlLi5Si2

Al18Li2Si6

Al3Li7Si4Al3Li8Si5

Al3Li12Si4

SiAl

Li

LiAlLi3Al2

Li4Al9Li22Si5

Li13Si4

Li7Si3Li12Si7

Al2Li3Si2

AlLiSi

AlLi5Si2

Al18Li2Si6

Al3Li7Si4Al3Li8Si5

Al3Li12Si4

Diffusion multiple

Page 7: Lightweight Intermetallics for Hydrogen StorageLightweight Intermetallics for Hydrogen Storage J.-C. Zhao, Jun Cui, Yan Gao, John Lemmon, Tom Raber, Job Rijssenbeek, Gosia Rubinsztajn,

7

• Space to be screened: Al-Li, Al-Li-Si, Al-Li-Mg, Al-Ga, Al-Li-Cu, Al-Li-Mn, Al-Mg-Zn, Al-Mg-Cu, Al-Li-Ge, Al-Li-Si, …

SiAl

Li

LiAlLi3Al2

Li4Al9Li22Si5

Li13Si4

Li7Si3Li12Si7

Al2Li3Si2

AlLiSi

AlLi5Si2

Al18Li2Si6

Al3Li7Si4Al3Li8Si5

Al3Li12Si4

SiAl

Li

LiAlLi3Al2

Li4Al9Li22Si5

Li13Si4

Li7Si3Li12Si7

Al2Li3Si2

AlLiSi

AlLi5Si2

Al18Li2Si6

Al3Li7Si4Al3Li8Si5

Al3Li12Si4

• Space to be screened: Li-Si, Li-Mg-Si, Mg-Si, Na-Si, Li-Na-Si, Na-Al-Si, Li-Na-Al-Si Li-Na-Si, …

Aluminides Silicides

• Al and Si are lightweight, high availability & low cost• Many compounds known to exist but not evaluated for H2 storage• Minimal risk of forming volatile hydrides (e.g., BH3, NH3)

Li Si

Na

Li22Si5Li13Si4

Li7Si3

Li3NaSi6

NaSi

NaSi2

NaSinLi12Si7Li Si

Na

Li22Si5Li13Si4

Li7Si3

Li3NaSi6

NaSi

NaSi2

NaSinLi12Si7

Aluminides and Silicides

Page 8: Lightweight Intermetallics for Hydrogen StorageLightweight Intermetallics for Hydrogen Storage J.-C. Zhao, Jun Cui, Yan Gao, John Lemmon, Tom Raber, Job Rijssenbeek, Gosia Rubinsztajn,

8

RuRh Pt

PdPd Rh

RhPd

PtCr

Cr

Pt

Ru

Cr3Pt

σ(Cr,Ru)50 μm

Cr

Pt

Ru

Cr3Pt

σ50 μmbcc

hcp

fcc

Cr

Pd

Pt

fcc

A15

bcc

Cr

Pd

Rh

fcchcp

bccA15

Cr

Pd

Ru

fcc

hcp bcc

σCr

Pt

Rh

fcc

hcp

bcc

A15

Cr

Pt

Ru

fcchcp

A15bcc

σ

Rh

CrRu

fcchcp

bcc

A15

σ

Pd

Pt

Rh

fcc fcc

Pd

Pt

Ru

fcc

hcp

Pd

Rh

Ru

fcc

hcp

Ru

Rh

Pt

fcc

hcp

TiCr

Nb Si Nb

Nb

Ti

(Ti,Nb)3Si

1150°C

Nb

Si

TiSi2

TiSi

(Ti,Nb)5Si3

(Ti,Nb)5Si4

NbSi2

(Nb,Ti)5Si3

Ti

(Ti,Nb)3Si

1150°C

Nb

Si

TiSi2

TiSi

(Ti,Nb)5Si3

(Ti,Nb)5Si4

NbSi2

(Nb,Ti)5Si3

1150°C

Nb

Si

TiSi2

TiSi

(Ti,Nb)5Si3

(Ti,Nb)5Si4

NbSi2

(Nb,Ti)5Si3

Diffusion Multiples & Alloy Development

Synthesize many compounds simultaneously

Page 9: Lightweight Intermetallics for Hydrogen StorageLightweight Intermetallics for Hydrogen Storage J.-C. Zhao, Jun Cui, Yan Gao, John Lemmon, Tom Raber, Job Rijssenbeek, Gosia Rubinsztajn,

9

• Slice & polish• 1st-level

characterization

Charge with D2

Screening with thermographyIdentify,

synthesize & test leads

React @ desired Tand atmosphere

M3

??M1

M2

Combinatorial Synthesis & HTS

Screening with time-of-flight

secondary ion mass spectroscopy

Effective combi synthesis methods developed

Page 10: Lightweight Intermetallics for Hydrogen StorageLightweight Intermetallics for Hydrogen Storage J.-C. Zhao, Jun Cui, Yan Gao, John Lemmon, Tom Raber, Job Rijssenbeek, Gosia Rubinsztajn,

10

Ti0 10 20 30 40 50 60 70 80 90 100

Mg

0

10

20

30

40

50

60

70

80

90

100

Al

0

10

20

30

40

50

60

70

80

90

100

Run 1Run 2Run 3

Start Mg3-Al0.03 End Mg0.03Al3

Sputtered Array Imaging A/B ratio

Mg

Al Si

Run1Run2Run3

Thin-film methodsSynthesis• Complementary to

diffusion multiple• Great for exploring Mg,

Al, Si alloys• Map phase diagram at

6% intervals, 3 runs, 5hrs.

• 7 target co-sputtering, DC and RF power

Screening• Optical reactor

capability, 350 °C, 55 atm.

Screen for H2storage with thermography

Combinatorial Synthesis & HTS: Results

Thermography is an effective screening tool

Page 11: Lightweight Intermetallics for Hydrogen StorageLightweight Intermetallics for Hydrogen Storage J.-C. Zhao, Jun Cui, Yan Gao, John Lemmon, Tom Raber, Job Rijssenbeek, Gosia Rubinsztajn,

11

75-300°C135 bar

310-380°C2 bar

380°C135 bar

Al

LiAl

LiAlSiH0.9

LiAl

LiAlSiH0.9

Si

LiAlSiH0.9

LiAl (Al)

LiAlSiH0.9 + Si + Al

LiAl + Li12Si7 + Al

LiAl

Charging kinetics are very fast

Hydrogenation viaintermediates at 300 °C

Decomposition withoutintermediates at 380 °C

Literature:LiAlSi + 0.45 H2 LiAlSiH0.9 535°C, 80-82 bar

New result: 300-380°C, < 135 barAlLi + Li12Si7 + Al + H2 LiAlSiH0.9 + LiH + (Al)

SiAl

Li

LiAlLi3Al2

Li4Al9Li22Si5

Li13Si4

Li7Si3Li12Si7

AlLiSi

SiAl

Li

LiAlLi3Al2

Li4Al9Li22Si5

Li13Si4

Li7Si3Li12Si7

AlLiSi

In-Situ XRD: Results

First intermetallic hydride in non-transition metal alloys

Page 12: Lightweight Intermetallics for Hydrogen StorageLightweight Intermetallics for Hydrogen Storage J.-C. Zhao, Jun Cui, Yan Gao, John Lemmon, Tom Raber, Job Rijssenbeek, Gosia Rubinsztajn,

12

GE Lightweight Intermetallics Progress

1. Designed new diffusion multiple configuration and tested for alkali metals

2. Demonstrated the screening capability of thermography and ToF-SIMS

3. Studied/screened several compounds in the Li-Al-Si ternary system – This system has the first reversible intermetallic hydride in non-transition metal alloys

Page 13: Lightweight Intermetallics for Hydrogen StorageLightweight Intermetallics for Hydrogen Storage J.-C. Zhao, Jun Cui, Yan Gao, John Lemmon, Tom Raber, Job Rijssenbeek, Gosia Rubinsztajn,

13

Future WorkRemainder of FY ’05:• Team with modeling partners to identify promising

concepts/systems• Continue to make combi samples & screen the

aluminides and silicides composition space• Synthesize lab quantities of compounds identified

from combi screening to validate the methodology

FY ’06:• Continue with the hydride discovery task (Task 1)• Begin Task 2: materials synthesis • Prepare Task 3: system-level materials evaluation

models and setup

Page 14: Lightweight Intermetallics for Hydrogen StorageLightweight Intermetallics for Hydrogen Storage J.-C. Zhao, Jun Cui, Yan Gao, John Lemmon, Tom Raber, Job Rijssenbeek, Gosia Rubinsztajn,

14

GE Lightweight Intermetallics for Hydrogen Storage: Plan

Task 3: System-level evaluationTest operational performanceDevelop constitutive modelsIdentify preferred system

Go/No-Go Materials meeting DOE2010 targets

Task 1: Materials discoveryIdentify candidate intermetallicsMake diffusion multiplesConduct initial screeningIdentify promising compounds

Task 2: Materials synthesisSynthesize lab-scale quantitiesFully characterize the compounds

2005 2006 2007 2008 2009TASK

Go/No-Go Combi methodology validation

Go/No-Go Hydrides > 6.0 wt.%

Go/No-Go Gram-quantity > 6.0 wt.%

Task 4: System-level evaluationScaleup materials processEvaluate product