shell models for alkali metal trimersphysics.usc.edu/shells/talks/ernst_part_ii_shelleffects... ·...

56
Institute of Experimental Physics 1 Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010 EP Shell Models for Alkali Metal Trimers: Electronic Level Structure and Magnetic Properties from Experimental and Theoretical Investigations Lecture II introduction: helium droplets, doping with foreign species, spectroscopy alkali atoms and molecules on helium droplets spectra, absorption and magnetic circular dichroism identification of high spin trimers ab initio K 3 and Rb 3, K 2 Rb and KRb 2 quartet states quartet state shell structure, harmonic oscillator states the ultimate resolution: electron spin resonance

Upload: others

Post on 01-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Institute of Experimental Physics

    1Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EP

    Shell Models for Alkali Metal Trimers:Electronic Level Structure and Magnetic

    Properties from Experimental and Theoretical Investigations

    Lecture II■ introduction: helium droplets, doping with foreign

    species, spectroscopy■ alkali atoms and molecules on helium droplets■ spectra, absorption and magnetic circular

    dichroism■ identification of high spin trimers■ ab initio K3 and Rb3, K2Rb and KRb2 quartet states■ quartet state shell structure, harmonic oscillator

    states■ the ultimate resolution: electron spin resonance

  • Institute of Experimental Physics

    2Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EPHelium nanodroplets

    cooling clusters evaporative(adiabatic expansion) grow cooling

    ■ Excellent cryostat, at T~0.4K■ Weak interactions■ Liquid (in fact superfluid)■ Confinement (r = 20-100 Å)■ “Natural selection” of weakly bound species

    HeN

  • Institute of Experimental Physics

    3Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EPSuperfluid helium droplets as nanocryostat

    Spectroscopic linewidths?

    Rotational (microwave) and vibrational (infrared)excitation of a dopantin a superfluid

    No friction, only inertia

    1 cm-1

    300 cm-1

    Electronic excitation (visible or UV)of a dopant

    Electron repulsionby helium

    Broadenedandblue-shifted

    K 4s-4p

    Details: C. Callegari and W. E. Ernst in: Handbook of High Resolution Spectroscopy, eds. F. Merkt and M. Quack, Wiley 2010

    Grebenev, Toennies, Vilesov(Science 1998)

    Trot=0.37 K

  • Institute of Experimental Physics

    4Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EP

    KCl:O-2 luminescence spectrum at 4.2K.

    From: Freiberg & Rebane in „Zero-Phonon Lines“ (eds. Sild & Haller (Springer))

    Comparison of LIF spectra of dopants on/in helium nanodroplets (Na2 singlet vs. glyoxal):

    Superfluid helium droplets as nanocryostatSpectroscopic linewidths?

  • Institute of Experimental Physics

    5Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EPExperiment

  • Institute of Experimental Physics

    6Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EP

    Alkali n-mers on HeN: High-spin selectivity

    E

    + =

    + =

    E

  • Institute of Experimental Physics

    7Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EPHomonuclear & heteronuclear alkali molecules

    11500 12000 12500 13000 13500 14000 14500 15000 15500 16000 16500 17000 17500

    K2 K2

    Rb2

    K3 K3

    KRb

    KRb

    KRb

    Rb3

    Rb3

    wavenumber

    Rb3

    KRb

    K3Rb K Rb2

    KRb

    LIF spectra of K + Rb attached to He nanodroplets

    K Rb

    1 2 0 0 0 1 3 0 0 0 1 4 0 0 0 1 5 0 0 0 1 6 0 0 0 1 7 0 0 00

    5 0 0

    1 0 0 0

    1 5 0 0

    2 0 0 0

    2 5 0 0

    3 0 0 0

    3 5 0 0

    w a v e n u m b e r

    LIF

    sign

    al /

    arb.

    u.

    R b 3R b

    R b 2 :1 3 g

    R b 3

    R b 3

    R b 2 :2 3 g

    Rb only

    1 2 0 0 0 1 3 0 0 0 1 4 0 0 0 1 5 0 0 0 1 6 0 0 0 1 7 0 0 0 1 8 0 0 00

    2 0 0 0

    4 0 0 0

    6 0 0 0

    8 0 0 0

    K 3:

    LIF

    sign

    al

    w a v e n u m b e r

    K 3:

    2 4E ' - 1 4A '2

    K

    K 2:

    1 3 g

    K 2 :

    2 3 g

    K 3 : K only

  • Institute of Experimental Physics

    8Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EP

    12000 13000 14000 15000 16000 170000

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    wavenumber spektrenKRbcollected

    23

    33+3

    KRb

    KRb

    K2Rbor

    KRb2

    K2Rbor

    KRb2

    Johann Nagl and Carlo Callegari

    heteronuclear alkali molecules

  • Institute of Experimental Physics

    9Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EP

    11500 12000 12500 13000 13500 14000 14500 15000 15500 16000 16500 17000 17500

    K2 K2

    Rb2

    K3 K3

    KRb

    KRb

    KRb

    Rb3

    Rb3

    wavenumber

    Rb3

    KRb

    K3Rb K Rb2

    KRb

    LIF spectra of K + Rb attached to He nanodroplets

  • Institute of Experimental Physics

    10Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EPAlkali-HeN pseudo diatomic: atomic excitation ns-np

    1) Treat He droplet as a giant closed-shell atom

    2) Calculate (vdW) molecular potential by integrating vdW pair potentials over He density

    3) Approximate spectrum with F-C Factors

    23/2

    21/2

    21/221/2 5s

    5p

    HeNRb

    HeNRb

    HeNRb

    Rb 5s on HeN surface,DFT calculation (help by F. Toigo) in:Brühl, Trasca, Ernst JCP 115, 10220 (2001)

    ● ● ● ● ●

    ●●●●●

  • Institute of Experimental Physics

    11Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EP

    HeN

    Key questionsDopants with spin in external B-field

    inside

    surface

    Create spin precession:

    Spin relaxation due tohelium environment?

    For atoms?

    For molecules?

    Related topic: helium buffer gas cooling of oriented atoms or molecules

    B

    LASER

    Carlo Callegari

  • Institute of Experimental Physics

    12Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EP

    linear

    +

    Add magnetic field and exploit dichroism:

    Rb 5s-5p

    /4

    B= 2.9 kG

    field free

    excitedstate(2P1/2)

    with magnetic field

    TS TS=0.37K

    ground state(2S1/2)

    - +linear

    0.37 K

    T

    Spin temperature

    Phys. Rev. Lett. 98, 075301-1-4 (2007)

  • Institute of Experimental Physics

    13Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EPHighly excited states and ionization of atomsFor example: two step processes in HeN-Rb

    ~12817 cm-1

    ~12579 cm-1

    Fixed

    ~25700 cm-1 52D manifold

    52P3/2

    52S1/2

    52P1/2

    2-step excitation

    Scanned ~13175cm-1

    12601cm-1

    12606cm-1

    12611cm-1 52S1/2 (2Σ1/2)

    52P3/2 (2π3/2, 2Σ1/2)52P1/2 (2π1/2)

    12607cm-1

    21911cm-1

    33691cm-1bare Rb

    Moritz Theisen and Florian Lackner

  • Institute of Experimental Physics

    14Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EP

    Florian Lackner

    Moritz Theisene-

    Rb+

    He

    Rb+

    He

    Rb+

    Hee-

    Goal: High-lying Rydberg state

    Rb+

    Hee-

  • Institute of Experimental Physics

    15Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EP

    Cold chemistry in confinement

    initiate reactions with laserexcited atoms, e.g. Cs 7p + H2

    dope dropletwith H2 or HCl

    H2

    add alkali

  • Institute of Experimental Physics

    16Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EP

    11500 12000 12500 13000 13500 14000 14500 15000 15500 16000 16500 17000 17500

    K2 K2

    Rb2

    K3 K3

    KRb

    KRb

    KRb

    Rb3

    Rb3

    wavenumber

    Rb3

    KRb

    K3Rb K Rb2

    KRb

    LIF spectra of K + Rb attached to He nanodroplets

  • Institute of Experimental Physics

    17Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EP

    Rb on He nanodroplets: Rb2 1 3g 1 3u+

    13200 13400 13600 138000

    100

    200

    300

    400

    500

    600

    700

    800

    LIF

    / arb

    .u.

    Wavenumber / cm-1

  • Institute of Experimental Physics

    18Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EP

    Comparison of Frank-Condon factors to LIF spectrum

    4 6 8 10 12 14 16

    12800

    13000

    13200

    13400

    0

    500

    1000

    1500

    2000

    2500

    13200 13300 13400 13500 13600 13700 138000,00

    0,05

    0,10

    0,15

    0,20

    0,25

    0,30

    0,35

    FC

    F

    Wavenumber / cm-1

    LIF

    / ar

    b.u.

    1g

    0g-

    0g+

    2g

    ground state: only v” = 0 populatedexcited state v’=0–9 for each SO substate

    +43 cm-1

    ab-initio potential energy curves from O. Dulieu (Orsay)

  • Institute of Experimental Physics

    19Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EPSpin-orbit coupling: alkali 3Π on helium

    H = Hmol + Hd + HSOBasis: Eigenstates of Hmolcomponents of angular momenta along z: Hd interaction with helium(determined by integrating alkali-He pair potentials(Pascale) weighted by the helium density distribution)

    HSO: Well known spin orbit Hamiltonian in basis (approximated R independent)In general: 12x12 matrix

    y

    z

    Gerald Auböck

    J. Phys. Chem. A111, 7404 (2007), in memory of Roger Miller

    Tendencies:Cs2 at left end,others between 1 and 3 on horizontal scale

  • Institute of Experimental Physics

    20Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EPOur model incl. Zeeman effect

    (G. Auböck, J. Nagl, C. Callegari, and W.E. Ernst, J. Phys. Chem. A, 2007)

    Rb2: LIF, MCD with Simulation K2: LIF, MCD with Simulation

    Zeeman populationscorrespond to 0.37 K

    temperature, i.e thesame as inside the

    droplet.τ

  • Institute of Experimental Physics

    21Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EP

    Na2 Na3

    First observation of trimers on droplets(collaboration with G. Scoles, Princeton)

    PRL 74, 3592 (1995)

    PRL 77,4532 (1996)

  • Institute of Experimental Physics

    22Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EP

    relaxation

    spin flip

    h h h

    h1850 cmE

    trimerzedspinpolari

    bind

    (~ 700 cm-1three-body int.)

    4.4 Å

    Photoinduced Spin Dynamics

    Science 273, 629 (1996)

  • Institute of Experimental Physics

    23Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EP

    11500 12000 12500 13000 13500 14000 14500 15000 15500 16000 16500 17000 17500

    K2 K2

    Rb2

    K3 K3

    KRb

    KRb

    KRb

    Rb3

    Rb3

    wavenumber

    Rb3

    KRb

    K3Rb K Rb2

    KRb

    LIF spectra of K + Rb attached to He nanodroplets

  • Institute of Experimental Physics

    24Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EPDepletion spectra with mass selective detection

    (use quadrupole mass spectrometer)

  • Institute of Experimental Physics

    25Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EPAlkali trimer quartet state excitations

    (Phys. Rev. Lett. 100, 063001-1-4 (2008))

    Calculations:

    MOLPRO,Complete Active Space Self Consistent Field(CASSCF) & CASPT2

    Andreas W. Hauser

  • Institute of Experimental Physics

    26Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EP

    Quartet trimers: Electronic structure

  • Institute of Experimental Physics

    27Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EPHomonuclear Alkali Trimers K3 and Rb3

    3

    Geometry optimization at the RHF-CCSD(T) level of theory

    strongly boundlow-spin2E´ ground state

    K3 Rb3

    b = 4.1 A b = 4.4 A= 77°

    = 79°

    K3 Rb3

    b = 5.05 A b = 5.5 A= 60°

    = 60°

    More weakly bound(van der Waals) high-spin4A2´ ground state

  • Institute of Experimental Physics

    28Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EP

    3

    Geometry optimization at the RHF-CCSD(T) level of theory

    Introduction of normal coordinates Scan over Qx coordinate

  • Institute of Experimental Physics

    29Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EP

    A borrowed approximation: harmonic oscillator eigenfunctions

    yes, but not as good as for doublet

    Check CI vectors

    MOs are delocalized and show typical s,p,d character

    Make density plots of canonical MOs

    We observe a close similarity with the energy ordering of a harmonic oscillator

    No, it is more complicated

    Compare the harmonic osci eigenenergieswith the observed bands of the ab inito calculation

    This model offers a qualitative description of state energies

    Fit MO energies with 5-parameter formulaincluding anharmonicity and cross terms

    Is the state pattern comparable to atomic s,p,d energies?

    How localized are the MOs?

    Does a single-electron approximation hold?

    A shell model for the quartet states

  • Institute of Experimental Physics

    30Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EP

    Time-independend Schrödinger equation in N dimensions:

    Apply factorization method:

    Choose isotropic harmonic oscillator potential:

    Solutions:

    dimension !

    A shell model for the quartet states

    N=2 (x,y)N=1 (z)

  • Institute of Experimental Physics

    31Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EPA shell model for the quartet states

    (x,y) (z)

  • Institute of Experimental Physics

    32Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EP

    (0,0,0)

    (0,±2,0)

    (1,0,0)

    (0,0,1)

    (0,±1,1)E=h(2n+l)+hznz+anharm.

    (0,±1,0)

    A shell model for the quartet states

  • Institute of Experimental Physics

    33Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EP ×104

    (0,±1,0)+

    (0,0,1)

    (0,±2,0)(1,0,0)

    B2

    B2

    A2 B1

    A2

    (0,0,0)

  • Institute of Experimental Physics

    34Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EP

    A borrowed approximation: harmonic oscillator eigenfunctions

    yes, but not as good as for doublet

    Check CI vectors

    MOs are delocalized and show typical s,p,d character

    Make density plots of canonical MOs

    We observe a close similarity with the energy ordering of a harmonic oscillator

    No, it is more complicated

    Compare the harmonic osci eigenenergieswith the observed bands of the ab inito calculation

    This model offers a qualitative description of state energies

    Fit MO energies with 5-parameter formulaincluding anharmonicity and cross terms

    Is the state pattern comparable to atomic s,p,d energies?

    Are the MOs comparable to AOs?

    Does a single-electron approximation hold?

    A shell model for the quartet states

  • Institute of Experimental Physics

    35Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EP

    Vibronic spectra

  • Institute of Experimental Physics

    36Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EPFurther refinement: SO-coupling

    CASPT2 + ECP-LS

  • Institute of Experimental Physics

    37Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EPJahn-Teller effect theory

    Qx Qy

    Energy

    Two-fold vibrational degeneracy

    Two-fold electronic degeneracy

  • Institute of Experimental Physics

    38Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EP

    Adiabatic energy surfaces are obtained by diagonalizationof He +HSO:

    Relativistic Jahn-Teller effect theory

    Harmonic force term

    SO splitting

    Linear JT parameter

    Quadratic JT parameter

    potential surfaces !

    = f(Qx,Qy)

  • Institute of Experimental Physics

    39Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EP

    Parameters in dimensionless units:

    Jahn-Teller parameters

    D

  • Institute of Experimental Physics

    40Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EP

    Vibronic spectra: the 14A2’24E’ transition

    V = 0

    V = 1V = 2

  • Institute of Experimental Physics

    41Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EPAlkali trimer quartet state excitations

    K3 and Rb3(quartet):Hauser, Auböck, Callegari, Ernst,J. Chem.Phys. 132,164310 (2010)

    (doublet):Hauser, Callegari,Soldan, Ernst,J. Chem. Phys. 129,044307 (2008)andspectral predictions:Chem.Phys.(in print)

    heteronuclear:in preparation

  • Institute of Experimental Physics

    42Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EPLevel Structure and Magnetic Properties

    from One-Electron Atoms to Clusterswith Delocalized Electronic Orbitals:

    Shell Models for Alkali Trimersby A.W. Hauser, C. Callegari, W.E. Ernst

    in: P. Piecuch et al. (eds.), Advances in the Theory of Atomic and Molecular Systems, Progress in Theoretical Chemistry and Physics 20, DOI

    10.1007/978-90-481-2985-0 30, Springer Science+Business Media B.V. 2009

    Doublet states:Electronic shell model,

    See e.g. Cocchini, Upton,Andreoni, J. Chem. Phys. 1989

    Quartet states:Our model relating the electronicstructure to the eigenstatesof the harmonic oscillator,cf. single particle states inquantum dots

  • Institute of Experimental Physics

    43Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EPMagnetic Resonance

    Superfluid helium nanodroplets

    a cold container for single

    particles (0.38 K)

    study exotic, ‘unstable’ species

    (e.g. K3, Rb3)

    preparation probingmanipulation

    A C

    dBdz

    dBdz

    B

    single atoms long spin lifetime create spin polarization

    low optical density indirect detection

    Rabi: spatial separation

  • Institute of Experimental Physics

    44Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EP

    High resolution mw or rf spectroscopy?

    How about polarization methods?

    Narrow linewidth on mw and IR transitions

    Large linewidth on optical transitions

    Molecules in/on helium droplets:

    LIF Detection of Microwave Absorption e.g. W. E. Ernst, S. Kindt, and T. Törring, Phys. Rev. Lett. 51, 979(1983)

    W. E. Ernst, J. Kändler, C. Noda, J. S. McKillop and R. N. Zare,Hyperfine Structure of BaI, J. Chem. Phys. 85, 3735-3743 (1986).

    RTPI Detection of Microwave AbsorptionNa3, W.E. Ernst and O. Golonzka (1999)

  • Institute of Experimental Physics

    45Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EP

    Pumping and probingThe optical 2S1/2 2P1/2 transitions can be used to manipulate and probe spin states

    2P1/2

    +1/2

    -1/2

    +3/2

    +1/2

    -1/2

    +1/2-1/2-3/2

    +-

    mj2P3/2

    2S1/2

    Zeeman

    K can be spin polarized by depletion

    Rb can be spin polarized by optical pumping G. Auböck, J. Nagl,

    C. Callegari,and W. E. ErnstPRL 98, 075301(2007)PRL 101, 035301(2008)

    12600 12800 13000 132000

    50

    100

    150

    200

    LIF

    (103

    cou

    nts p

    er se

    cond

    )

    wavenumber (cm-1)

    Rb K

    D2

    D1

    12600 12800 13000 132000

    50

    100

    150

    200

    LIF

    (103

    cou

    nts p

    er se

    cond

    )

    wavenumber (cm-1)

    Rb K

    D2

    D1 D2D1

  • Institute of Experimental Physics

    46Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EP

    A C Bpump mw probe

    Markus Koch

    Optically Detected ESR

    - -

  • Institute of Experimental Physics

    47Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EP

    0 100 200 300 400 500

    -8-6-4-202468

    Ener

    gy /

    h (G

    Hz)

    Magnetic field B0 (mT)

    2S1/2F=3

    F=2I=5/2

    85Rb

    linear,|S,I;F,mF ›

    linear,|S,I;mS,mI ›

    Breit-Rabi formula

    ESR on helium droplets

    g

    aHFS

  • Institute of Experimental Physics

    48Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EP

    0 100 200 300 400 500

    -8-6-4-202468

    Ener

    gy /

    h (G

    Hz)

    Magnetic field B0 (mT)

    2S1/2F=3

    F=2I=5/2

    85Rb

    0 100 200 300 400 50002468

    1012141618

    Tran

    sitio

    nene

    rgy

    / h (G

    Hz)

    Magnetic field B0 (mT)

    |∆mS| = 1, ∆mI = 0

    trans

    ition

    ene

    rgy

    / h (G

    Hz)

    9.4

    GH

    z

    free atomdroplet free atom B0droplet

    magnetic field shift (µT)

    LIF

    sign

    al (1

    03cp

    s)

    magnetic field (mT)200 300 400

    ESR on helium droplets

  • Institute of Experimental Physics

    49Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EP

    0 100 200 300 400 500

    -8-6-4-202468

    Ener

    gy /

    h (G

    Hz)

    Magnetic field B0 (mT)

    2S1/2F=3

    F=2I=5/2

    0 100 200 300 400 50002468

    1012141618

    Tran

    sitio

    nene

    rgy

    / h (G

    Hz)

    Magnetic field B0 (mT)

    85Rb

    9.4

    GH

    zfree atom droplet

    |∆mS| = 1, ∆mI = 0

    trans

    ition

    ene

    rgy

    / h (G

    Hz)

    magnetic field (mT)200 300 400

    magnetic field shift (µT)

    LIF

    sign

    al (1

    03cp

    s)

    ESR on helium droplets

  • Institute of Experimental Physics

    50Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EP

    Modeling: Breit-Rabi formula

    • droplet: variations δaHFS, δgS free parameters

    • 39K: δaHFS/aHFS = 325 ± 40 ppm, δgS/gS = 0 ± 3 ppm

    • 85Rb: δaHFS/aHFS = 412 ± 8 ppm, δgS/gS = 0 ± 3 ppm

    • δaHFS/aHFS = δ|0|2/|0|2

    varies with droplet size!dropletfree atom

    magnetic field shift (µT)

    LIF

    sign

    al (1

    03cp

    s)

    magnetic field (mT)200 300 400

    magnetic field shift (µT)

    LIF

    sign

    al (1

    03cp

    s)

    200 300 400

    magnetic field shift (µT)

    LIF

    sign

    al (1

    03cp

    s)M. Koch, J. Lanzersdorfer, C. Callegari, J.S. Muenter, and W. E. ErnstJ. Phys. Chem. A 113, 13347-13356(2009)

    M. Koch, G. Auböck, C. Callegari and W. E. ErnstPhys. Rev. Lett. 103, 035302-1-4(2009)

    ESR on helium droplets

  • Institute of Experimental Physics

    51Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EPElectron spin density at alkali nucleus

    Following Adrian [J. Chem. Phys. 32 (4), 972–981 (1960)], the relative change of hfs consists of two parts:

    Relative change of electron spin density at alkali nucleus in ppm for HeN droplet

    see M.Koch, C. Callegari, and W. E. Ernst, Mol. Phys. 108 (7), 1005 (2010), issue in honor of R. N. Zare

  • Institute of Experimental Physics

    52Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EPRabi oscillations

    decoherence time T2 > 50 µs

    MW magnetic field BMW (µT)

    ES

    R a

    mpl

    itude

    |c1|2

    ES

    R a

    mpl

    itude

    cavity position, x=vt

    MW magnetic field BMW (µT)

    ES

    R a

    mpl

    itude

    dephasing time T2 ≥ 50 µs

    kxa

    x

    aAB

    sin1

    … detuning

    … Rabi frequency

  • Institute of Experimental Physics

    53Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EPESR on droplets: conclusions & future• first demonstration of MR (ESR) on doped HeN • hyperfine resolved ESR spectrum of 39K, 85Rb

    • shifts (~400 ppm), droplet-size dependent: Fermi contact term

    • coherent population transfer: Rabi oscillations

    Currently in progress:

    Cr:S = 6/2I = 0

    vd WaalsXe

    129Xe: I = 1/2 131Xe: I = 3/2

    rest: I = 0

    K, Rb

    Poster by Martin Ratschek and Markus Koch (yesterday)

  • Institute of Experimental Physics

    54Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EPThe HeDrop Team

    Dr. Andreas W. Hauser

    Dr. Carlo Callegarinow Elettra, Trieste Dr. Markus Koch

    Johann Naglnow MIBLA Co

    Gerald Auböcknow EPFL

    Florian Lackner

    Moritz Theisen

    Martin Ratschek

    Research funded by

    Fonds zur Förderung der wissenschaftlichen Forschung

    & EU Network „Cold Molecules“

  • Institute of Experimental Physics

    55Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EP

    WE-Heraeus-Seminar No. 343

    Helium Clusters– Finite-Size Superfluid and Nano-Size Cryostat

    Physikzentrum Bad Honnef, GermanyMarch 30 to April 1, 2005

    Scientific Organizers:Wolfgang E. Ernst and Carlo Callegari

    WE-Heraeus-Seminar No. 482

    Helium Nanodroplets– Confinement for Cold Molecules and Cold Chemistry

    Physikzentrum Bad Honnef, GermanyMay 29 to June 1, 2011

    Scientific OrganizersWolfgang E. Ernst and Markus Koch

    Institute of Experimental PhysicsGraz University of Technology

    Petersgasse 16A-8010 Graz, Austria, Europe

    E-mail: [email protected]

  • Institute of Experimental Physics

    56Wolfgang E. Ernst Shell Models, Erice, July 26-30, 2010

    EP

    THE END