stucklike glu:glutamyltrna...

1
Stuck Like Glu: GlutamyltRNA Reductase (GluTR) East Brunswick High School Abstract GlutamyltRNA reductase (GluTR) catalyzes the reducBon of glutamyltRNA Glu into glutamate1 semialdehyde (GSA). We explored the structure and funcBon of Arabidopsis thaliana GluTR and its sBmulator protein, GluTR binding protein (GluBP), to infer the role of GluTR in the aquaBc duckweed plant, Landol0a punctata. IntroducBon Tetrapyrroles are a class of chemical compounds useful in many biological processes. Examples of tetrapyrroles include chlorophyll, heme, and phytochromobilin. 5Aminolevulinic acid (ALA) is the universal precursor for tetrapyrrole biosynthesis. In plants, algae, and most bacteria, ALA is produced in a 2step mechanism (see Figure 1). Stromalocalized GluTR catalyzes the first, ratelimiBng step of that mechanism. Informally, GluTR acBvity divides into two steps: (1) glutamate is extracted from the glutamyl tRNA Glu and converted into a thioester intermediate and (2) the thioester intermediate is reduced into GSA. Thylakoid membranebound GluBP sBmulates GluTR catalyBc acBvity by causing a conformaBonal change that favors electron transfer. Methods Using BLAST analysis, students inferred the funcBon of over 100 cDNA sequences from L. punctata . We selected a sequence (clone 04SH1.14) coding for part of a domain on GluTR to further invesBgate. AXer using similar sequences to infer the protein sequence that the transcript encoded, we researched the protein’s structure, funcBon, and applicaBons. Discussion GluTR is a homodimer, in which each subunit contains 3 domains: an Nterminal catalyBc domain where glutamyltRNA Glu and GluBP bind, an NADPHbinding domain, and a Cterminal dimerizaBon domain that holds the dimer together. Figure 1: 5Aminolevulinic Acid (ALA) is produced in a 2step mechanism. First, glutamyltRNA Glu is reduced into GSA by GluTR in a reacBon which GluBP sBmulates. Then, GSAM isomerizes GSA into ALA, which can be converted into tetrapyrroles. Figure 2: GluTR also funcBons in 2 steps. In the first step, it extracts glutamate from glutamyltRNA Glu , creaBng a thioester intermediate whose thioester group is labeled in red. Then, the thioester intermediate is reduced into GSA. Figure 3: GluTR in complex with its sBmulator protein, GluBP. Both proteins are homodimers. GluTR monomers each have 3 domains and GluBP monomers each have two domains. Discussion The reacBon starts when glutamyltRNA Glu binds to the catalyBc domain on each monomer of GluTR. The negaBvely charged tRNA Glu is a]racted to a posiBve region on GluTR. A conserved arginine (Arg415) also recognizes the tRNA Glu and another conserved arginine (Arg146) recognizes the glutamate. Figure 4: NegaBvely charged tRNA Glu (purple) superimposed on posiBvely charged region where it binds to on GluTR (blue) Then, Cys144 separates the glutamate from the tRNA Glu by breaking the aminoacyl bond between glutamate and the tRNA Glu , forming the thioester intermediate at the GluTR catalyBc domains. Meanwhile, NADPH binds to the NADPHbinding domains. Next, GluBP binds to GluTR, stabilizing the Vstructure of GluTR and driving a conformaBonal change that twists the spinal α helix on each GluTR subunit. This swings the NADPHbinding domains toward the catalyBc domains, making it easier for NADPH to transfer electrons to the thioester intermediate. Figure 5: Thioester intermediate (yellow sBck) receiving electrons from NADPH (other sBck model). Once NADPH reduces the thioester intermediate into GSA, the product is then shu]led out towards the center of the complex as a result of GSA interacBons with Gly101, Cys144, Arg146, and His193 on GluTR. AXer being channeled, GSA is held in an exit pocket on GluTR consisBng of: His105, Glu148, Phe183, and Asp202. GSA is shielded by Lys271 on GluBP to prevent it from escaping. When GluBP detaches, GSA2,1aminomutase (GSAM), the next enzyme in the 2step ALA synthesis mechanism, binds to a similar region on GluTR. Since the channel is no longer shielded, GSAM accepts GSA and isomerizes it into ALA. Figure 6: Review of ALA synthesis pathway Conclusion Figure 7: (a) Coupled enzyme assay reveals 3fold increase in GluTR acBvity by GluBP binding (b) Coupled enzyme assay reveals heme is a negaBve allosteric regulator of GluTR (c) Northern blot analysis shows gene coding for GluTR is only expressed during light exposure Many other molecules and condiBons affect GluTR acBvity. Coupled enzyme assays reveal that GluBP increases GluTR acBvity 3fold. Heme negaBvely allosterically regulates GluTR, which allows cells to conserve both energy and resources by prevenBng the producBon of excess ALA. Northern blot analysis indicates that increasing light and temperature increases GluTR producBon. Therefore, GluTR is most acBve in the presence of GluBP, low heme content, high temperature, and increased light exposure. A B C References h]p://www.ncbi.nlm.nih.gov/pmc/arBcles/PMC402005, h]p://www.ncbi.nlm.nih.gov/pmc/arBcles/ PMC125327/, h]p://www.jbc.org/content/274/43/30679.long, h]p://www.ncbi.nlm.nih.gov/pubmed/ 15757895, h]p://www.ncbi.nlm.nih.gov/pubmed/22180625, h]p://www.plantcell.org/content/ 6/2/265.full.pdf Step 1: Glu ExtracBon Step 2: ReducBon L L L L D D glutamyltRNA Glu GSA ALA Tetrapyrroles (chlorophyll, heme, etc.) GSAM GluTR GluBP

Upload: others

Post on 15-Jul-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: StuckLike Glu:GlutamyltRNA &Reductase(GluTR)waksman.weebly.com/.../04_glutr_poster_final_14-15.pdfStuckLike Glu:GlutamyltRNA &Reductase(GluTR) EastBrunswick%High%School% Abstract Glutamyl9tRNA%

Stuck  Like  Glu:  Glutamyl-­‐tRNA  Reductase  (GluTR)  East  Brunswick  High  School  

Abstract  Glutamyl-­‐tRNA   reductase   (GluTR)   catalyzes   the  reducBon   of   glutamyl-­‐tRNAGlu   into   glutamate-­‐1-­‐semialdehyde   (GSA).  We   explored   the   structure  and   funcBon   of  Arabidopsis   thaliana   GluTR   and  its   sBmulator   protein,   GluTR   binding   protein  (GluBP),  to  infer  the  role  of  GluTR  in  the  aquaBc  duckweed  plant,  Landol0a  punctata.  

IntroducBon  Tetrapyrroles  are  a  class  of  chemical  compounds  useful   in  many  biological  processes.  Examples  of  tetrapyrroles   include   chlorophyll,   heme,   and  phytochromobilin.  5-­‐Aminolevulinic  acid   (ALA)   is  the   universal   precursor   for   tetrapyrrole  biosynthesis.  In  plants,  algae,  and  most  bacteria,  ALA   is   produced   in   a   2-­‐step   mechanism   (see  Figure   1).   Stroma-­‐localized   GluTR   catalyzes   the  first,  rate-­‐limiBng  step  of  that  mechanism.  

Informally,  GluTR  acBvity  divides   into  two  steps:(1)   glutamate   is   extracted   from   the   glutamyl-­‐tRNAGlu   and   converted   into   a   thioester  intermediate   and   (2)   the   thioester   intermediate  is  reduced  into  GSA.  Thylakoid  membrane-­‐bound  GluBP   sBmulates   GluTR   catalyBc   acBvity   by  causing   a   conformaBonal   change   that   favors  electron  transfer.  

Methods  Using   BLAST   analysis,   students   inferred   the  funcBon   of   over   100   cDNA   sequences   from   L.  punctata.   We   selected   a   sequence   (clone  04SH1.14)  coding  for  part  of  a  domain  on  GluTR  to   further   invesBgate.   AXer   using   similar  sequences  to  infer  the  protein  sequence  that  the  transcript  encoded,  we   researched   the  protein’s  structure,  funcBon,  and  applicaBons.  

Discussion  GluTR   is   a   homodimer,   in   which   each   subunit  contains   3   domains:   an   N-­‐terminal   catalyBc  domain  where  glutamyl-­‐tRNAGlu  and  GluBP  bind,  an   NADPH-­‐binding   domain,   and   a   C-­‐terminal  dimerizaBon   domain   that   holds   the   dimer  together.    

Figure  1:  5-­‐Aminolevulinic  Acid  (ALA)  is  produced  in  a  2-­‐step  mechanism.  First,  glutamyl-­‐tRNAGlu   is   reduced   into  GSA  by  GluTR   in  a   reacBon  which  GluBP   sBmulates.   Then,   GSAM   isomerizes   GSA   into   ALA,   which   can   be  converted  into  tetrapyrroles.  

Figure   2:   GluTR   also   funcBons   in   2   steps.   In   the   first   step,   it   extracts  glutamate   from   glutamyl-­‐tRNAGlu,   creaBng   a   thioester   intermediate  whose  thioester  group  is  labeled  in  red.  Then,  the  thioester  intermediate  is  reduced  into  GSA.    

Figure   3:   GluTR   in   complex   with   its   sBmulator   protein,   GluBP.   Both  proteins   are   homodimers.   GluTR   monomers   each   have   3   domains   and  GluBP  monomers  each  have  two  domains.  

Discussion  The  reacBon  starts  when  glutamyl-­‐tRNAGlu  binds  to   the   catalyBc   domain   on   each   monomer   of  GluTR.   The   negaBvely   charged   tRNAGlu   is  a]racted   to   a   posiBve   region   on   GluTR.   A  conserved   arginine   (Arg415)   also   recognizes   the  tRNAGlu  and  another  conserved  arginine  (Arg146)  recognizes  the  glutamate.    

Figure  4:  NegaBvely  charged  tRNAGlu  (purple)  superimposed  on  posiBvely  charged  region  where  it  binds  to  on  GluTR  (blue)  

Then,   Cys144   separates   the   glutamate   from   the  tRNAGlu  by  breaking  the  aminoacyl  bond  between  glutamate  and  the  tRNAGlu,  forming  the  thioester  intermediate   at   the   GluTR   catalyBc   domains.  Meanwhile,  NADPH  binds  to  the  NADPH-­‐binding  domains.  Next,  GluBP  binds   to  GluTR,   stabilizing  the   V-­‐structure   of   GluTR   and   driving   a  conformaBonal   change   that   twists   the   spinal   α-­‐helix   on   each   GluTR   subunit.   This   swings   the  NADPH-­‐binding   domains   toward   the   catalyBc  domains,  making  it  easier  for  NADPH  to  transfer  electrons  to  the  thioester  intermediate.  

Figure   5:   Thioester   intermediate   (yellow   sBck)   receiving   electrons   from  NADPH  (other  sBck  model).  

Once  NADPH  reduces  the  thioester  intermediate  into   GSA,   the   product   is   then   shu]led   out  towards  the  center  of  the  complex  as  a  result  of  GSA   interacBons   with   Gly101,   Cys144,   Arg146,  and  His193  on  GluTR.    

AXer   being   channeled,   GSA   is   held   in   an   exit  pocket   on   GluTR   consisBng   of:   His105,   Glu148,  Phe183,   and  Asp202.  GSA   is   shielded   by   Lys271  on   GluBP   to   prevent   it   from   escaping.   When  GluBP   detaches,   GSA-­‐2,1-­‐aminomutase   (GSAM),  the   next   enzyme   in   the   2-­‐step   ALA   synthesis  mechanism,   binds   to   a   similar   region   on   GluTR.  Since   the   channel   is   no   longer   shielded,   GSAM  accepts  GSA  and  isomerizes  it  into  ALA.    

Figure  6:  Review  of  ALA  synthesis  pathway  

Conclusion  

Figure   7:   (a)   Coupled   enzyme   assay   reveals   3-­‐fold   increase   in   GluTR  acBvity   by   GluBP   binding   (b)   Coupled   enzyme   assay   reveals   heme   is   a  negaBve   allosteric   regulator   of   GluTR   (c)   Northern   blot   analysis   shows  gene  coding  for  GluTR  is  only  expressed  during  light  exposure  

Many   other   molecules   and   condiBons   affect  GluTR   acBvity.   Coupled   enzyme   assays   reveal  that  GluBP  increases  GluTR  acBvity  3-­‐fold.  Heme  negaBvely   allosterically   regulates   GluTR,   which  allows   cells   to   conserve   both   energy   and  resources  by  prevenBng  the  producBon  of  excess  ALA.   Northern   blot   analysis   indicates   that  increasing  light  and  temperature  increases  GluTR  producBon.   Therefore,   GluTR   is   most   acBve   in  the   presence   of  GluBP,   low   heme   content,   high  temperature,  and  increased  light  exposure.    

A   B  

C  

References  h]p://www.ncbi.nlm.nih.gov/pmc/arBcles/PMC402005,  h]p://www.ncbi.nlm.nih.gov/pmc/arBcles/PMC125327/,  h]p://www.jbc.org/content/274/43/30679.long,  h]p://www.ncbi.nlm.nih.gov/pubmed/15757895,  h]p://www.ncbi.nlm.nih.gov/pubmed/22180625,  h]p://www.plantcell.org/content/6/2/265.full.pdf  

Step  1:  Glu  ExtracBon   Step  2:  ReducBon  

L   L   L   L  D   D  glutamyl-­‐tRNAGlu  

GSA  

ALA  

Tetrapyrroles  (chlorophyll,  heme,  etc.)  

GSAM  

GluTR  GluBP