tareacinematica2016

17
CURSO: FISICA CATEDRATICO: ING. CESAR GARCÍA NAJERA NUTRICION-BIOLOGÍA Conceptos básicos que debe saber en esta unidad Cinemática La cinemática es la parte de la mecánica clásica que estudia las leyes del movimiento de los cuerpos sin tener en cuenta las causas que lo producen, limitándose esencialmente, al estudio de la trayectoria en función del tiempo. Variables cinemáticas L: Medida de longitud T: Medida de tiempo Tiempo Es una medida de la separación de eventos consecutivos, es una cantidad escalar. Su unidad de medida en el SI es el segundo. Posición Es un vector representado por r : . Su unidad de medida es: en el sistema internacional. Lo podemos considerar como el lugar físico en el que se encuentra un cuerpo dentro de un espacio determinado. Si el cuerpo se localiza a lo largo del eje x se representa en forma vectorial así i x r , Si el cuerpo se localiza a lo largo del eje y se representa en forma vectorial así j y r , respecto a un nivel de referencia dado y si convenimos a la derecha del origen es positivo y hacia la izquierda es negativo y verticalmente hacia arriba es positivo y hacia abajo es negativo. Desplazamiento Es un vector representado por r . Su unidad de medida es: en el sistema internacional. Es un cambio de posición sin importar la trayectoria seguida o el tiempo empleado y tiene una relación estrecha con el movimiento de un cuerpo. j y i x r r r o Donde i x representa el cambio de posición en x, j y representa el cambio de posición en y 1

Upload: cesar-garcia-najera

Post on 12-Jan-2017

289 views

Category:

Education


0 download

TRANSCRIPT

Page 1: Tareacinematica2016

CURSO: FISICA CATEDRATICO: ING. CESAR GARCÍA NAJERA NUTRICION-BIOLOGÍA

Conceptos básicos que debe saber en esta unidad

Cinemática

La cinemática es la parte de la mecánica clásica que estudia las leyes del movimiento de los cuerpos sin tener en cuenta las causas que lo producen, limitándose esencialmente, al estudio de la trayectoria en función del tiempo.

Variables cinemáticas L: Medida de longitud T: Medida de tiempo

Tiempo

Es una medida de la separación de eventos consecutivos, es una cantidad escalar. Su unidad de medida en el SI es el segundo.

Posición

Es un vector representado por r : .

Su unidad de medida es: en el sistema internacional.

Lo podemos considerar como el lugar físico en el que se encuentra un cuerpo dentro de un espacio determinado.

Si el cuerpo se localiza a lo largo del eje x se representa en forma vectorial así ixr , Si el

cuerpo se localiza a lo largo del eje y se representa en forma vectorial así jyr , respecto

a un nivel de referencia dado y si convenimos a la derecha del origen es positivo y hacia la izquierda es negativo y verticalmente hacia arriba es positivo y hacia abajo es negativo.

Desplazamiento

Es un vector representado por r .

Su unidad de medida es: en el sistema internacional. Es un cambio de posición sin importar la trayectoria seguida o el tiempo empleado y tiene una relación estrecha con el movimiento de un cuerpo.

jyixrrr o Donde ix representa el cambio de posición en x,

jy representa el cambio de posición en y

1

Page 2: Tareacinematica2016

CURSO: FISICA CATEDRATICO: ING. CESAR GARCÍA NAJERA NUTRICION-BIOLOGÍA

Longitud de la trayectoria (distancia recorrida)

Es un escalar que se representa como d,

Su unidad de medida es: en el sistema internacional. Es la línea que une las diferentes posiciones que a medida que pasa el tiempo va ocupando un punto en el espacio o, de otra forma, es el camino que sigue el objeto dentro de un movimiento.

Rapidez

Es un escalar que se representa como (v)

T

L

Su unidad de medida es:

s

m en el sistema internacional.

Es la magnitud de la velocidad en un instante dado.

22

yx vvv

xv es la rapidez en x,

yv es la rapidez en y

Velocidad media

Es un vector representado por ( mv ). Su unidad de medida es:

s

m en el sistema

internacional. Es la relación que existe entre el desplazamiento r de un cuerpo respecto a

un intervalo de tiempo t , vectorialmente es así:

t

rvm

= j

t

yi

t

x

En esta unidad solo se trabajará en una dimensión: en x t

xVX

, En y

t

yVy

Velocidad instantánea

Es un vector representado por instv

2

Page 3: Tareacinematica2016

CURSO: FISICA CATEDRATICO: ING. CESAR GARCÍA NAJERA NUTRICION-BIOLOGÍA

Su unidad de medida es:

s

m en el sistema internacional.

La velocidad instantánea se define como el límite de la velocidad media cuando la diferencia de t tiende a cero.

dt

rd

tt

rv

0

lim=

jviv yx

En esta unidad se trabajará en una dimensión:

En x dt

dx

t

xv

tx

0lim

En y dt

dy

t

yv

ty

0lim

Rapidez promedio

Es un escalar representado como mv

T

L. Su unidad de medida es:

s

m en el SI.

Es la relación entre la distancia que recorre un cuerpo respecto a un intervalo de tiempo.

t

corridaciaDisvm

Retan

Aceleración media

Es un vector representado por (ma )

2T

L. Su unidad de medida es:

2s

m en el

sistema internacional.

Podemos definir la aceleración media como la razón a la cual cambia el vector velocidad en

relación al tiempo. t

vam

= j

t

vi

t

v yx

Componentes de la aceleración media

EN x t

vaX

, EN y

t

va y

Aceleración instantánea Se define como el límite de la aceleración media cuando t tiende a cero, matemáticamente:

3

Page 4: Tareacinematica2016

CURSO: FISICA CATEDRATICO: ING. CESAR GARCÍA NAJERA NUTRICION-BIOLOGÍA

dt

vd

tt

vainst

0

lim . Su unidad de medida es:

2s

m en el SI.

Movimiento rectilíneo uniforme

Este tipo de movimiento es aquel que lleva a cabo un móvil en línea recta y se dice que es uniforme cuando recorre distancias iguales en tiempos iguales o de otra forma es el movimiento donde la aceleración es cero por lo que la RAPIDEZ permanece constante a lo

largo del tiempo. Ecuación: tvx x con aceleración cero.

Movimiento con aceleración constante o (MRUV) : En este tipo de movimiento la aceleración es constante, por lo que la velocidad de móvil varía de forma lineal y la posición de manera parabólica respecto del tiempo.

Las ecuaciones que rigen este movimiento con aceleración constante son las siguientes:

FORMA VECTORIAL (En dos dimensiones)

FORMA ESCALAR ( MRUV) sobre el eje x.

)t

Convención de signos que tomaremos para resolver los problemas

Vectores dirigidos hacia la derecha o verticalmente hacia arriba son positivos. Vectores dirigidos hacia la izquierda o verticalmente hacia abajo son negativos.

Caída libre

Este es un tipo de movimiento rectilíneo acelerado, es el movimiento de un objeto que cae en dirección al centro de la Tierra con una aceleración equivalente a la aceleración de la gravedad, despreciando la fricción del aire. (En el caso del planeta Tierra al nivel del mar es de

4

Page 5: Tareacinematica2016

CURSO: FISICA CATEDRATICO: ING. CESAR GARCÍA NAJERA NUTRICION-BIOLOGÍA

aproximadamente 9,8 m/s2). Las ecuaciones de caída libre son:

Ecuaciones para caída libre

Con una convención de signos positivo dirección hacia arriba y negativo hacia abajo.

, , , )t

Ejemplos resueltos EJEMPLO 1 Dos automóviles A y B viajan a lo largo de una línea recta en la misma dirección, las magnitudes de las velocidades son: el auto que lleva la delantera B 25 m/s y el otro A 15 m/s. En el momento en que los vehículos están a 100 metros de distancia, A comienza a acelerar a

5 2/ sm , y B acelera a 3 2/ sm :

a) ¿Cuanto tiempo le toma al auto A alcanzar al auto B en segundos? b) ¿Cuál es la posición en la que el auto A alcanzar al auto B, en m?

RESOLUCION: Los dos autos tienen movimiento rectilíneo uniformemente variado con aceleraciones distintas pero constantes, ya que A acelera a mayor razón este alcanzará al auto B. Se procederá primero, dibujando la condición inicial y luego la final.

1. Hacer un dibujo de lo que describe el problema. Inicialmente el auto A se encuentra separado de B 100 m. A B o 0 100 m Al final se encuentran en la misma posición los dos autos. A y B

0

x

5

Page 6: Tareacinematica2016

CURSO: FISICA CATEDRATICO: ING. CESAR GARCÍA NAJERA NUTRICION-BIOLOGÍA

2. Datos: Tome en cuenta que los dos autos se mueven hacia la derecha, sus velocidades, desplazamientos son positivas y aceleraciones por la convención de signos.

AUTO A AUTO B Velocidad inicial 25 m/s 15 m/s Posición inicial 0 m 100 m Posición final x x Aceleración 5 m/s2 3 m/s2

3. Planteo de ecuaciones del movimiento para cada elemento: AUTO A AUTO B xf = xi + vit + ½at2 xf = xi + vit + ½ at2 x = 15t +½(5)t2 x = 100+25t+ ½*3t2 x = 15t +2.5t2 (1) x = 100+25t+1.5t2 (2) Al resolver simultáneamente las ecuaciones para el auto A y B obtenemos la solución

a) Tiempo = 16.2 segundos, le toma alcanzar el auto A a B y

b) el valor de x = 899 m, que es la posición donde A alcanzó a B

EJEMPLO 2 Un automóvil recorre 40 mi al este con una rapidez constante de 40 mi / h, y luego continua en esa dirección 40 mi con una rapidez constante de 60 mi/h. ¿Cuál es la magnitud de la velocidad promedio en todo el recorrido?

RESOLUCION El problema consta de dos etapas la primera de A a B a una rapidez constante (aceleración cero), de la misma forma la segunda etapa de B a C,

1. Dibujo

A B C o o o o o o

2. Datos Etapa DISTANCIA RAPIDEZ

AB 40 mi 40 mi/h BC 40 mi 60 mi/h

3. Aplicar ecuaciones de movimiento. Recordemos que la velocidad

promedio es t

rvm

∆x = V*t (rapidez constante)

El desplazamiento total es la suma de los desplazamientos ∆x = 40 + 40 = 80 m El tiempo total es la suma del tiempo utilizado de AB y el tiempo usado de BC:

6

Page 7: Tareacinematica2016

CURSO: FISICA CATEDRATICO: ING. CESAR GARCÍA NAJERA NUTRICION-BIOLOGÍA

t = ∆x/v

h

h

mi

mi

h

mi

mit 667.1

60

40

40

40 , Finalmente la velocidad media de todo el recorrido

es: h

mi

t

rvm 48

667.1

80

(magnitud de la

velocidad media)

EJEMPLO 3

Un tren partió del reposo y se desplazó con aceleración constante. En cierto momento su velocidad es 33.0 m / s y 160 m más adelante su velocidad es 54.0 m/ s. Calcular:

a) El tiempo necesario para cubrir los 160m, en segundos es: b) El tiempo que duró en movimiento del reposo hasta el momento en que el

tren alcanzó una velocidad de 54 m / s

RESOLUCION

a) El tiempo necesario para cubrir los 160m, en segundos es:

160 m El tren tiene un movimiento rectilíneo uniformemente variado y lo analizaremos por etapas, cuyos datos son los siguientes: La etapa de A a B tenemos, v0 = 33 m/s, vf = 54 m/s, ∆x = 160m, podemos encontrar la aceleración que es constante en m/s2, aplicando la ecuación que contiene a estos datos :

sustituyendo (54)2 = (33)2 + 2 a ( 160 ),

despejando a de la ecuación da como resultado: a = 5.71 m/s2 El tiempo para cubrir los 160 m se puede calcular así:

, sustituyendo datos: 54 = 33 + 5.71t, al despejar obtenemos:

t = 3.67 segundos a) El tiempo que duró en movimiento del reposo hasta el momento en que el

tren alcanzó una velocidad de 54 m / s Ahora analizaremos de 0 hasta B, tenemos como datos: Vi = 0 m/s, Vf =54 m/s, y la aceleración que es constante a = 5.71 m/s2 La ecuación que contiene a los datos y la pregunta que es:

, sustituyendo datos: 54 = 0 + 5.71 t, al despejar obtenemos:

t = 9.46 segundos

7

Page 8: Tareacinematica2016

CURSO: FISICA CATEDRATICO: ING. CESAR GARCÍA NAJERA NUTRICION-BIOLOGÍA

EJEMPLO 4 Una pelota es arrojada hacia arriba desde el suelo y tarda 2.25 s en llegar a una altura de 36.8m, tome g = 9.8 m/s2

a) La velocidad inicial en m/s es: b) La velocidad a los 2.25 segundos en m/s es : c) La velocidad promedio desde que inicia su

movimiento hasta que llega al suelo es:

RESOLUCION:

a) El tipo de movimiento que tiene la pelota es rectilíneo uniformemente variado donde la aceleración es g = - 9.8 m/s2 dirigida hacia abajo.

Se pregunta la velocidad inicial, que corresponde a la del punto A

Datos: yf = 36.8m, yi = 0 si colocamos la referencia en el punto más bajo, t= 2.25 s, g = - 9.8 m/s2

Ecuación de MRUV, que contiene yi , yf , t y lo que se pregunta vi

yf = yi + vit + ½at2 sustituyendo en la ecuación 36.8 = vi (2.25) + ½(-9.8)(2.25)2, Despejando:

La velocidad inicial es de 27.4 m/s.

b) Datos: vi = 27.4 m/s, Yf = 36.8m, yi = 0, g = - 9.8 m/s2 y la pregunta es la

velocidad en t = 2.25 s la ecuación que reúne a estos datos es

8

Page 9: Tareacinematica2016

CURSO: FISICA CATEDRATICO: ING. CESAR GARCÍA NAJERA NUTRICION-BIOLOGÍA

c) La velocidad promedio desde que inicia su movimiento hasta que llega al suelo es cero, debido a que su desplazamiento ∆x = 0 y

la velocidad promedio es 0

t

xvm

d) La altura máxima se da cuando su velocidad final es cero y tenemos como

datos, analizando de A hasta E: vi = 27.4 m/s, yf =?, yi = 0, g = - 9.8 m/s2 vf = 0 y la pregunta es la altura máxima: la ecuación que reúne a estos datos es

0 = (27.4)2 + 2(-9.8)(y - 0) al despejar

Altura máxima es y = 38.3 m

ACTIVIDAD 1 PARA REFLEXIONAR

¿Distingue la diferencia entre velocidad media y rapidez promedio? Si su respuesta es sí, entonces responda lo siguiente: Camina 4m hacia el norte y luego 4 m hacia el sur, ¿Qué puede decir de la velocidad media y rapidez promedio y qué diferencia encuentra? Responda aquí___________________________________________________

ACTIVIDAD 2 ESTUDIO DE CASO

Infracción de tránsito. El objetivo de este caso que se le plantea, es que aplique el concepto de velocidad instantánea y factores de conversión para resolver dicho caso. Un conductor de un automóvil conduce su auto sobre la Avenida Reforma y observa en un instante el tacómetro una rapidez de 40 mi/h. En ese instante un policía de Emetra lo detiene diciéndole que cometió una infracción por exceso de velocidad porque la velocidad límite es de 50 km/h, pero como él no sabe de conversiones le pregunta a usted si en realidad cometió la infracción.

Aplique sus conocimientos de física y demuéstrele si cometió la infracción o no. Presentar un comentario del caso.

9

Page 10: Tareacinematica2016

CURSO: FISICA CATEDRATICO: ING. CESAR GARCÍA NAJERA NUTRICION-BIOLOGÍA

ACTIVIDAD 3

“UTILIZACIÓN DE UNA IMAGEN PARA REALIZAR UNA DEMOSTRACION DE LA ACELERACION” El objetivo de esta actividad es que aplique el concepto de aceleración media para demostrar que la aceleración es constante e n cambios de velocidad para intervalos de tiempos

iguales. Para la realización de ésta usted debe elaborar una tabla en donde tomará como base la figura.

Calcular cambios de velocidad en cambios de tiempo iguales, y la aceleración en cada intervalo de tiempo. (Observe el ejemplo)

Todos estos datos los debe registrar en la tabla mostrada abajo.

Después de haber terminado la tabla le toca REFLEXIONAR:

Analice los resultados obtenidos:________________________________

No. INTERVALO DE TIEMPO

∆t= tf - to

CAMBIO DE VELOCIDAD (m/s)

ACELERACION

t

vv

t

va

f

0 (m/s2)

1 De t = 0seg a t = 1seg ∆t= 1 s

0vvv f =

= 10 – 0 m/s

101

010

t

va

2

3

4

ACTIVIDAD No. 4 HOJA DE TRABAJO

PROBLEMA 1: Una partícula inicialmente se encuentra en la posición -10 m, 5 segundos después se encuentra en la posición + 10 m y al pasar otros 5 segundos se encuentra en la posición 0 m. Calcule:

a) La distancia total recorrida por la partícula.

Tiempo (s) Posición (m)

0 - 10

5 + 10

10 0

10

Page 11: Tareacinematica2016

CURSO: FISICA CATEDRATICO: ING. CESAR GARCÍA NAJERA NUTRICION-BIOLOGÍA

b) El desplazamiento total de la partícula. c) La velocidad media de la partícula. d) La rapidez media de la partícula.

PROBLEMA 2 Una partícula se encuentra inicialmente en la posición A = – 10 m y tiene una velocidad de + 2 m/s. Durante los siguientes 6 segundos acelera constantemente a 2 m/s2 hasta la posición B, luego se mantiene con velocidad constante. Calcule:

a) La posición de la partícula a los 6 segundos.

b) La posición de la partícula a los 10 segundos.

c) El desplazamiento de la partícula en los primeros 10 segundos.

Tiempo (s)

Posición (m)

Velocidad (m/s)

Aceleración (m/s2)

0 XA= -10 vA = + 2 2

6 XB = ? vB = ? 0

10 XC = ? vC = vB 0

PROBLEMA 3 Una espeleóloga está explorando una cueva; iniciando en la entrada de la cueva, sigue un pasadizo 180 m al Oeste, luego 210 m a 600 al Este del Sur, finalmente 280 m a 300 al Este del Norte hasta la salida; tardando 40 minutos en completar el viaje desde que entra hasta que sale de la cueva. (Tome el eje Y(+) como el Norte y el eje X(+) como el Este) 8. El desplazamiento de la espeleóloga desde que entra hasta que sale de la cueva, en m es de: A) 167î – 48.2ǰ B) 167î – 41.9ǰ C) 142î + 137ǰ D) 148î + 117ǰ E) NEC 10. Una pista de carreras circular plana tiene 500 m de radio. ¿Cuál es el desplazamiento en Kilómetros de un ciclista que sigue la pista del extremo Norte al extremo Sur? (Tome el eje Y(+) como el Norte y el eje X(+) como el Este) A) – 1.20 ǰ B) – 0.500π ǰ C) – 1.00 ǰ D) – 0.600π ǰ E) NEC

PROBLEMA 4 Un automóvil recorre hacia el este una distancia de 54 Km, luego al norte 32 Km y luego 27 Km en dirección 280 AL NORTE DEL ESTE, tardando 1.5 horas en completar el viaje. A)El desplazamiento total en Km del automóvil desde el punto de arranque fue de: B)La rapidez promedio del viaje completo en Km/h es de:

C)La velocidad promedio del viaje completo en Km/h es de:

11

12

Page 12: Tareacinematica2016

CURSO: FISICA CATEDRATICO: ING. CESAR GARCÍA NAJERA NUTRICION-BIOLOGÍA

ACTIVIDAD No. 5 HOJA DE TRABAJO

PROBLEMA 1 En cierto instante un automóvil que viaja a una rapidez de 10 m/s, se le atraviesa una vaca que se encuentra a una distancia de 30m, frenando así a 2 m/s2 para no atropellarla. ¿Con la información anterior el auto atropella a la vaca o no?

PROBLEMA 2 Dos automóviles parten de la misma posición y en el mismo instante. El auto A tiene una rapidez constante de 40 mi / h en dirección hacia el este y el otro auto B se dirige hacia el oeste con una rapidez constante de 60 mi / h. ¿Cuál es la separación de ambos autos cuando han pasado 2 minutos a partir del inicio?

PROBLEMA 3 Un tren partió del reposo y se movió con aceleración constante a lo largo del eje x positivo. En un momento dado estaba viajando a +33 m/s, y 160 m más adelante lo estaba haciendo a +54 m/s. A) La magnitud de la aceleración del tren en m/s2 es de: B) El tiempo en segundos requerido por el tren desde que parte del reposo hasta que alcanza la velocidad de +54 m/s es: C) La distancia en metros recorrida por el tren desde que parte del reposo hasta

que alcanza la velocidad de +33 m/s es

PROBLEMA 4 Un corredor de autos viaja en una carretera recta, inicialmente parte del reposo con una aceleración de 5 m/s2 durante 15 segundos, posteriormente quita el pie del acelerador y sigue su movimiento con rapidez constante durante 20 minutos. ¿Cuál es la distancia total recorrida por el auto durante los 35 minutos?

PROBLEMA 5 Un automóvil recorre 40 mi al este con una rapidez constante de 40 mi / h, y luego continua en esa dirección 40 mi con una rapidez constante de 60 mi/h. ¿Cuál es la magnitud de la velocidad promedio en todo el recorrido?

Page 13: Tareacinematica2016

CURSO: FISICA CATEDRATICO: ING. CESAR GARCÍA NAJERA NUTRICION-BIOLOGÍA

PROBLEMA 6 Un zorro esta tranquilamente reposando cuando de pronto una escurridiza liebre pasa junto a él con una velocidad constante de 20î m/s, en ese preciso instante el zorro inicia la persecución acelerando constantemente a 10î m/s2. A) El tiempo en seg. que tarda el zorro en darle alcance a la liebre es de: a) 6 b) 8 c) 12 d) 4 e) NEC B) La distancia recorrida por el zorro desde que es pasado por la liebre hasta que le da alcance es de:

a) 80 b) 180 c) 60 d) 130 e) NEC

PROBLEMA 7 Una automovilista conduce por un camino recto a una rapidez constante de 15m/s. Justo cuando pasa frente a un policía motociclista estacionado, éste empieza a acelerar a

2m/s 2 para alcanzarla. Suponiendo que el policía mantiene esta aceleración, determine: A) El tiempo que tarda el policía en alcanzar a la automovilista en segundos. B) La rapidez del policía cuando alcanza al automovilista en m/s es: C) El desplazamiento total del policía cuando alcanza al automovilista en m / s

es:

ACTIVIDAD No. 6 HOJA DE TRABAJO

Responda seleccionando la respuesta correcta de las opciones que se dan en cada pregunta dejando constancia del procedimiento.

Un cohete de prueba se lanza verticalmente hacía arriba desde un pozo. Una catapulta le da una velocidad inicial de 80m/s a nivel del suelo. Posteriormente, sus motores se encienden y lo

aceleran hacía arriba a 4 m/ s 2 , hasta que alcanza una altura de 1,000 m. En ese punto sus motores fallan y el cohete entra en caída libre, con una aceleración de magnitud g. 1. El tiempo que dura el cohete en movimiento sobre el suelo, en segundos es:

a) 21 b) 31 c) 41 d) 51

2. La altura máxima en m, es: a) 1320 b) 1545 c) 1680 d) 1730

3. Cual es su velocidad (magnitud) justo antes de chocar con el suelo, en m/s: a) 80 b) 99 c) 184 d) 220

13

Page 14: Tareacinematica2016

CURSO: FISICA CATEDRATICO: ING. CESAR GARCÍA NAJERA NUTRICION-BIOLOGÍA

4. La velocidad promedio desde el momento que salió hasta que llegó al suelo, en

m/s es:

a) 0 b) 99 c) 184 d) 220

Se informó que una mujer cayó 100 pies desde el piso 17 de un edificio y aterrizó sobre una caja de ventilador metálica, la cual sumió hasta una profundidad de 18 pulgadas. Solo sufrió lesiones menores.

5. ¿ Cual es la magnitud de la aceleración (constante) mientras está en contacto

con la caja, en 2/ sp :

a) 1060 b) 2066 c) 2133 d) 4234

6. ¿ Cual es la rapidez de la mujer exactamente antes de chocar con la caja del

ventilador, en p/s:. a) 96 b) 80 c) 42 d) 34

7. ¿Cual es el tiempo que la mujer tarda en sumir la caja, en segundos: a) 0.04 b) 0.1 c) 0.21 d) 0.31

A través de una ventana situada a 25 metros sobre la calle se ve pasar una pelota desplazándose hacia arriba con una rapidez vertical de 20 m/s. Si la pelota fue lanzada desde la calle. 8. La rapidez inicial en m/s con la que fue lanzada la pelota es de:

a) 26.2 b) 19.7 c) 29.8 d) 31.2 e) NEC

14

Page 15: Tareacinematica2016

CURSO: FISICA CATEDRATICO: ING. CESAR GARCÍA NAJERA NUTRICION-BIOLOGÍA

9) La altura máxima en metros que alcanza la pelota sobre la calle es de: a) 25 b) 42.3 c) 35 d) 45.4 e) NEC 10) El tiempo total en segundos que la pelota estuvo en el aire es de:

a) 6.09 b) 5.34 c) 4.18 d) 8.16 e) NEC

Un señor tira una piedra verticalmente con una rapidez inicial de 40 m / s. Calcular : 1. Qué tiempo tarda en llegar a la altura máxima. 2. Cuál es la altura máxima.

Un niño está parado a 20 m de altura respecto al suelo. Calcular qué tiempo tarda y con qué velocidad toca el suelo una piedra si el niño:

3. La deja caer. 4. La tira hacia abajo con V0 = 10 m/s. 5. La tira hacia arriba con V0 = 10 m/s.

Una piedra es arrojada hacia arriba desde el techo de un edificio adquiriendo una rapidez inicial de 20 m/s en línea recta hacia arriba. El edificio tiene una altura de 50 metros y la piedra libra apenas el techo en su trayecto hacia abajo:

6. La altura máxima en m es: 7. La posición y hacia donde se mueve cuando han pasado 4 segundos. 8. La rapidez de la piedra a los 5 segundos en m/s es : 9. La rapidez promedio de la piedra desde el momento que fue lanzada hasta que

regresa a la altura que fue lanzada en m/s es:

Se lanza una piedra desde el suelo, verticalmente hacia arriba, con una rapidez inicial de 30 m/s. Hallar:

10. La posición que y velocidad al cabo de 1 s. 11. La altura máxima que alcanza y el tiempo empleado. 12. La velocidad cuando llega al suelo y tiempo total empleado. 13. ¿Qué relación hay entre los tiempos calculados en los apartados 32 y 33? 14. ¿Cómo son las velocidades de partida y de llegada?

15

Page 16: Tareacinematica2016

CURSO: FISICA CATEDRATICO: ING. CESAR GARCÍA NAJERA NUTRICION-BIOLOGÍA

Carne______________________Nombre________________________________________________

FORMULARIO Vectores

AsenA

AA

y

x

cos 22

yx AAA

xxx BAR yyy BAR

= =

= =

)()()(cos

222),,(

zbzaybyaxbxaABBA

zayaxaAzayaxakzajyaixaA

Trabajo = Torca =

BA

BA

cos

cos/ AP BA

,

B

B

B

BAP BA

/

senBABXA

Si la aceleración es constante y el tiempo inicial es cero:

tf

vovorfr

tatovorfrraov

fvtaov

fv

)(2

1

2

2

1 2

22

Movimiento Circular y Relativo

B/Av

P/Bv

P/Av

B/Ar

P/Br

P/Ar

2

22

a

0 1

Tr

r

tv

crtv

rsdt

d

tmedf

fT

Movimiento circular uniformemente variado

Dinámica de la traslación

gmwNssfN

kkfamF

Trabajo, potencia y energía mecánica

16

Page 17: Tareacinematica2016

CURSO: FISICA CATEDRATICO: ING. CESAR GARCÍA NAJERA NUTRICION-BIOLOGÍA

df

Ff

EEFNC

Wmec

EKTot

Wkxel

UmghgUmvK

vFPdt

dWP

t

W

mediaPrCosFrFWrdFW

02

2

12

2

1

*

17