the royal society of chemistry · 2014. 8. 27. · 1 supplementary information thermodynamic and...

9
1 Supplementary information Thermodynamic and kinetic properties of interpolymer complexes assessed by Isothermal Titration Calorimetry and Surface Plasmon Resonance Samuel C. Bizley, a Adrian C. Williams a and Vitaliy V. Khutoryanskiy a a Reading School of Pharmacy, University of Reading, Whiteknights, PO Box 224, Reading, Berkshire, RG6 6AD, UK. E-mail: [email protected]; Tel: +44 (0) 118 373 6119 Thermodynamic considerations = ∆ - Spontaneous formation of polymer-polymer complexes in solutions requires Gibbs free energy ( ) to be negative; this requires the enthalpy of a reaction ( ) to be negative or entropy ( ) to be large and positive. 1,2 The change in enthalpy measured by the ITC H observed) is the sum of 3 terms: (∆ = ∆ + ∆ + ∆ Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2014

Upload: others

Post on 10-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    Supplementary information

    Thermodynamic and kinetic properties of interpolymer complexes assessed by Isothermal Titration Calorimetry and Surface Plasmon Resonance

    Samuel C. Bizley,a Adrian C. Williams a and Vitaliy V. Khutoryanskiy a

    aReading School of Pharmacy, University of Reading, Whiteknights, PO Box 224,

    Reading, Berkshire, RG6 6AD, UK. E-mail: [email protected]; Tel: +44

    (0) 118 373 6119

    Thermodynamic considerations

    ∆𝐺𝑀 = ∆𝐻𝑀 - 𝑇∆𝑆𝑀

    Spontaneous formation of polymer-polymer complexes in solutions requires Gibbs

    free energy ( ) to be negative; this requires the enthalpy of a reaction ( ) to be ∆𝐺𝑀 ∆𝐻𝑀

    negative or entropy ( ) to be large and positive. 1,2∆𝑆𝑀

    The change in enthalpy measured by the ITC H observed) is the sum of 3 terms:(∆

    ∆𝐻 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 = ∆𝐻 𝑏𝑖𝑛𝑑𝑖𝑛𝑔 + ∆𝐻 𝑖𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 + ∆𝐻 𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

    Electronic Supplementary Material (ESI) for Soft Matter.This journal is © The Royal Society of Chemistry 2014

    mailto:[email protected]

  • 2

    Injection start

    Association period Rmax Stop injection

    Dissociation period

    Figure S1. Example Biacore sensorgram, detailing ka determination. Association rate (ka)

    was calculated via BIAevaluation software. Software fits data to a standard local kinetics

    model obtained using injection start, association period, Rmax and polymer concentration

    values. Data was transformed producing ka (see Table 2) as a measure of time and molar

    concentration (M-1s-1).

  • 3

    -0.30

    -0.25

    -0.20

    -0.15

    -0.10

    -0.05

    0.00

    0.05

    0 500 1000 1500 2000 2500

    µcal

    /sec

    Time, s-0.30

    -0.25

    -0.20

    -0.15

    -0.10

    -0.05

    0.00

    0.05

    0 500 1000 1500 2000 2500

    µcal

    /sec

    Time, s

    -0.30

    -0.25

    -0.20

    -0.15

    -0.10

    -0.05

    0.00

    0.05

    0 500 1000 1500 2000 2500

    µcal

    /sec

    Time, s -0.30

    -0.25

    -0.20

    -0.15

    -0.10

    -0.05

    0.00

    0.05

    0 500 1000 1500 2000 2500µc

    al/s

    ec

    Time, s

    A B

    C D

    Figure S2. Isothermal titration calorimetry isotherms obtained by titrating (A) water, (B) 0.2

    % w/v PAA, (C) 0.2 % w/v PMAA and (D) 0.2 % w/v TA with water at pH 2.0.

  • 4

    -0.3

    -0.25

    -0.2

    -0.15

    -0.1

    -0.05

    0

    0.05

    0 500 1000 1500 2000 2500

    µcal

    /sec

    Time, s-0.3

    -0.25

    -0.2

    -0.15

    -0.1

    -0.05

    0

    0.05

    0 500 1000 1500 2000 2500

    µcal

    /sec

    Time, s

    -0.3

    -0.25

    -0.2

    -0.15

    -0.1

    -0.05

    0

    0.05

    0 500 1000 1500 2000 2500

    µcal

    /sec

    Time, s-0.3

    -0.25

    -0.2

    -0.15

    -0.1

    -0.05

    0

    0.05

    0 500 1000 1500 2000 2500

    µcal

    /sec

    Time, s

    -0.3

    -0.25

    -0.2

    -0.15

    -0.1

    -0.05

    0

    0.05

    0 500 1000 1500 2000 2500

    µcal

    /sec

    Time, s-0.3

    -0.25

    -0.2

    -0.15

    -0.1

    -0.05

    0

    0.05

    0 500 1000 1500 2000 2500

    µcal

    /sec

    Time, s

    -0.3

    -0.25

    -0.2

    -0.15

    -0.1

    -0.05

    0

    0.05

    0 500 1000 1500 2000 2500

    µcal

    /sec

    Time, s-0.30

    -0.25

    -0.20

    -0.15

    -0.10

    -0.05

    0.00

    0.05

    0 500 1000 1500 2000 2500

    µcal

    /sec

    Time, s

    A B

    C D

    E F

    G H

    Figure S3. Isothermal titration calorimetry isotherms obtained by titrating (A) 0.2 % w/v

    DEX, (B) 0.2 % w/v HEC, (C) 0.2 % w/v MC, (D) 0.2 % w/v PAM, (E) 0.2 % w/v PEO, (F)

    0.2 % w/v PVA, (G) 0.2% w/v PMVE and (H) 0.2 % w/v PVP with water at pH 2.0.

  • 5

    -2

    3

    8

    13

    18

    23

    0 1000 2000

    μcal

    /sec

    Time, s

    -2

    3

    8

    13

    18

    23

    0 1000 2000

    μcal

    /sec

    Time, s

    -2

    3

    8

    13

    18

    23

    0 1000 2000

    μcal

    /sec

    Time, s

    -2

    3

    8

    13

    18

    23

    0 1000 2000μc

    al/s

    ecTime, sec

    -15

    -10

    -5

    0

    5

    10

    0 1000 2000

    μcal

    /sec

    Time, s

    A B

    C D

    E

    Figure S4. Isothermal titration calorimetry isotherms obtained by titrating (A) 0.2 % w/v

    HEC, (B) 0.2 % w/v PEO, (C) 0.2 % w/v PVA, (D) 0.2 % w/v PMVE and (E) 0.2 % w/v

    PVP with 2 % w/v poly (acrylic acid) solutions at pH 2.0.

  • 6

    -23

    -18

    -13

    -8

    -3

    2

    0 1000 2000μc

    al/s

    ec

    Time, s-2

    3

    8

    13

    18

    23

    0 1000 2000

    μcal

    /sec

    Time, s

    -23

    -18

    -13

    -8

    -3

    2

    0 1000 2000

    μcal

    /sec

    Time, s-2

    3

    8

    13

    18

    23

    0 1000 2000μc

    al/s

    ec

    Time, s

    -2

    3

    8

    13

    18

    23

    0 1000 2000

    μcal

    /sec

    Time, s

    -2

    3

    8

    13

    18

    23

    0 1000 2000

    μcal

    /sec

    Time, s

    -2

    3

    8

    13

    18

    23

    0 1000 2000

    μcal

    /sec

    Time,s

    A

    B

    C

    D

    E F

    G

    Figure S5. Isothermal titration calorimetry isotherms obtained by titrating (A) 0.2 % w/v

    DEX, (B) 0.2 % w/v HEC, (C) 0.2 % w/v PAM, (D) 0.2 % w/v PEO, (E) 0.2 % w/v PVA,

    (F) 0.2 % w/v PMVE and (G) 0.2% w/v PVP with 2 % w/v poly (methacrylic acid)

    solutions at pH 2.0.

  • 7

    -23

    -18

    -13

    -8

    -3

    2

    0 1000 2000μc

    al, s

    ec

    Time, s-2

    3

    8

    13

    18

    23

    0 1000 2000

    μcal

    , sec

    Time, s

    -32

    -22

    -12

    -20 1000 2000

    μcal

    /sec

    Time, s -30-20-10

    0102030

    0 1000 2000μcal

    /sec

    Time, s

    -23

    -18

    -13

    -8

    -3

    2

    0 1000 2000

    μcal

    /sec

    Time, s-2

    3

    8

    13

    18

    23

    0 1000 2000

    μcal

    /sec

    Time, s

    -23

    -18

    -13

    -8

    -3

    2

    0 1000 2000

    μcal

    /sec

    Time, s

    -2

    3

    8

    13

    18

    23

    0 1000 2000

    μcal

    /sec

    Time, s

    A

    B

    C

    D

    E

    F

    G

    H

    Figure S6. Isothermal titration calorimetry isotherms obtained by titrating (A) 0.2 % w/v

    HEC, (B) 0.2 % w/v MC, (C) 0.2 % w/v PAM, (D) 0.2 % w/v PEO, (E) 0.2 % w/v PVA, (F)

    0.2 % w/v PMVE, (G) 0.2% w/v PVP and (H) 0.2 % w/v DEX with 2 % w/v tannic acid

    solutions at pH 2.0.

  • 8

    PAA HEC

    Figure S7. Turbidity of polymer combinations, 0.2 % w/v acidic compound (1.5 mL) was

    mixed with 0.2 % w/v non-ionic polymer (1.5 mL) at pH 2.0 and stirred for 1 minute.

    0

    10000

    20000

    30000

    40000

    0 1000 2000 3000 4000

    Biac

    ore

    resp

    onse

    , RU

    Time, s

    TA

    PAA

    PMAA

    -1500

    8500

    18500

    28500

    38500

    0 1000 2000 3000 4000

    Biac

    ore

    resp

    onse

    , RU

    Time, s

    TA

    PAA

    PMAA

    0

    10000

    20000

    30000

    40000

    0 1000 2000 3000 4000

    Biac

    ore

    resp

    onse

    , RU

    Time, s

    TA

    PAA

    PMAA

    0

    10000

    20000

    30000

    40000

    0 1000 2000 3000 4000

    Biac

    ore

    resp

    onse

    , RU

    Time, s

    TA

    PAA

    PMAA

    0

    10000

    20000

    30000

    40000

    0 1000 2000 3000 4000

    Biac

    ore

    resp

    onse

    , RU

    Time, s

    TA

    PAA

    PMAA

    A B

    C D

    E

    Figure S8. Biacore sensorgrams for the formation of IPCs between acidic compounds and

    (A) PEO, (B) HEC, (C) PVP, (D) PMVE and (E) PVA. Concentrations are 0.2% w/v for

    acidic compounds and 0.2% w/v for non-ionic polymer solutions at pH 2.0.

  • 9

    References

    1 Ababou and E. J. Ladbury, Journal of Molecular recognition. 2007, 21, 4.2 M. J. Blandamer, P. M. Cullis and J. B. F. N. Engberts, Journal of the Chemical

    Society-Faraday Transactions. 1998, 94, 2261.