tlc226x, tlc226xa advanced lincmos rail-to … tlc226xa advanced lincmos rail-to-rail operational...

74
TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 1 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 Output Swing includes Both Supply Rails Low Noise . . . 12 nV/Hz Typ at f = 1 kHz Low Input Bias Current . . . 1 pA Typ Fully Specified for Both Single-Supply and Split-Supply Operation Low Power . . . 500 µA Max Common-Mode Input Voltage Range Includes Negative Rail Low Input Offset Voltage 950 µV Max at T A = 25°C (TLC2262A) Macromodel Included Performance Upgrade for the TS27M2/M4 and TLC27M2/M4 Available in Q-Temp Automotive HighRel Automotive Applications Configuration Control/Print Support Qualification to Automotive Standards description The TLC2262 and TLC2264 are dual and quadruple operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range in single- or split-supply applications. The TLC226x family offers a compromise between the micropower TLC225x and the ac performance of the TLC227x. It has low supply current for battery-powered applications, while still having adequate ac performance for applications that demand it. The noise performance has been dramatically improved over previous generations of CMOS amplifiers. Figure 1 depicts the low level of noise voltage for this CMOS amplifier, which has only 200 µA (typ) of supply current per amplifier. The TLC226x, exhibiting high input impedance and low noise, are excellent for small-signal conditioning for high-impedance sources, such as piezoelectric transducers. Because of the micro- power dissipation levels, these devices work well in hand-held monitoring and remote-sensing applications. In addition, the rail-to-rail output feature with single or split supplies makes this family a great choice when interfacing with analog-to-digital converters (ADCs). For precision applications, the TLC226xA family is available and has a maximum input offset voltage of 950 µV. This family is fully characterized at 5 V and ± 5 V. The TLC2262/4 also makes great upgrades to the TLC27M2/L4 or TS27M2/L4 in standard designs. They offer increased output dynamic range, lower noise voltage and lower input offset voltage. This enhanced feature set allows them to be used in a wider range of applications. For applications that require higher output drive and wider input voltage range, see the TLV2432 and TLV2442. If your design requires single amplifiers, please see the TLV2211/21/31 family. These devices are single rail-to-rail operational amplifiers in the SOT-23 package. Their small size and low power consumption, make them ideal for high density, battery-powered equipment. Copyright 2001, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Advanced LinCMOS is a trademark of Texas Instruments. 40 20 10 0 60 30 VN – Equivalent Input Noise Voltage – nv//Hz 50 f – Frequency – Hz EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY 10 10 2 10 3 10 4 nV/ Hz V n V DD = 5 V R S = 20 T A = 25°C Figure 1 On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.

Upload: lythuy

Post on 08-Apr-2018

220 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAIL

OPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

1POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Output Swing includes Both Supply Rails

Low Noise . . . 12 nV/√Hz Typ at f = 1 kHz

Low Input Bias Current . . . 1 pA Typ

Fully Specified for Both Single-Supply andSplit-Supply Operation

Low Power . . . 500 µA Max

Common-Mode Input Voltage RangeIncludes Negative Rail

Low Input Offset Voltage950 µV Max at TA = 25°C (TLC2262A)

Macromodel Included

Performance Upgrade for the TS27M2/M4and TLC27M2/M4

Available in Q-Temp Automotive HighRel Automotive ApplicationsConfiguration Control/Print SupportQualification to Automotive Standards

description

The TLC2262 and TLC2264 are dual andquadruple operational amplifiers from TexasInstruments. Both devices exhibit rail-to-railoutput performance for increased dynamic rangein single- or split-supply applications. TheTLC226x family offers a compromise between themicropower TLC225x and the ac performance ofthe TLC227x. It has low supply current forbattery-powered applications, while still havingadequate ac performance for applications thatdemand it. The noise performance has beendramatically improved over previous generationsof CMOS amplifiers. Figure 1 depicts the low levelof noise voltage for this CMOS amplifier, whichhas only 200 µA (typ) of supply current peramplifier.

The TLC226x, exhibiting high input impedanceand low noise, are excellent for small-signalconditioning for high-impedance sources, such aspiezoelectric transducers. Because of the micro-power dissipation levels, these devices work wellin hand-held monitoring and remote-sensingapplications. In addition, the rail-to-rail output feature with single or split supplies makes this family a greatchoice when interfacing with analog-to-digital converters (ADCs). For precision applications, the TLC226xAfamily is available and has a maximum input offset voltage of 950 µV. This family is fully characterized at 5 Vand ±5 V.

The TLC2262/4 also makes great upgrades to the TLC27M2/L4 or TS27M2/L4 in standard designs. They offerincreased output dynamic range, lower noise voltage and lower input offset voltage. This enhanced feature setallows them to be used in a wider range of applications. For applications that require higher output drive andwider input voltage range, see the TLV2432 and TLV2442. If your design requires single amplifiers, please seethe TLV2211/21/31 family. These devices are single rail-to-rail operational amplifiers in the SOT-23 package.Their small size and low power consumption, make them ideal for high density, battery-powered equipment.

Copyright 2001, Texas Instruments IncorporatedPRODUCTION DATA information is current as of publication date.Products conform to specifications per the terms of Texas Instrumentsstandard warranty. Production processing does not necessarily includetesting of all parameters.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications ofTexas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Advanced LinCMOS is a trademark of Texas Instruments.

40

20

10

0

60

30V

N –

Eq

uiv

alen

t In

pu

t N

ois

e V

olt

age

– n

v//H

z

50

f – Frequency – Hz

EQUIVALENT INPUT NOISE VOLTAGEvs

FREQUENCY

10 102 103 104

nV

/H

zV

n

VDD = 5 VRS = 20 ΩTA = 25°C

Figure 1

On products compliant to MIL-PRF-38535, all parameters are testedunless otherwise noted. On all other products, productionprocessing does not necessarily include testing of all parameters.

Page 2: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAILOPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2262 AVAILABLE OPTIONS

PACKAGED DEVICES

TAVIOmaxAT 25°C

SMALLOUTLINE

(D)

CHIPCARRIER

(FK)

CERAMICDIP(JG)

PLASTICDIP(P)

TSSOP(PW)

CERAMICFLATPACK

(U)

0°C to 70°C 2.5 mV TLC2262CD — — TLC2262CP TLC2262CPW —

40°C to 125°C 950 µV TLC2262AID — — TLC2262AIP TLC2262AIPW —–40°C to 125°C µ

2.5 mV TLC2262ID — — TLC2262IP — —

40°C to 125°C 950 µV TLC2262AQD — — — — —–40°C to 125°C µ

2.5 mV TLC2262QD — — — — —

–55°C to 125°C950 µV2.5 mV

——

TLC2262AMFKTLC2262MFK

TLC2262AMJGTLC2262MJG

——

——

TLC2262AMUTLC2262MU

The D packages are available taped and reeled. Add R suffix to device type (e.g., TLC2262CDR). The PW package is available only left-end tapedand reeled. Chips are tested at 25°C.

TLC2264 AVAILABLE OPTIONS

PACKAGED DEVICES

TAVIOmaxAT 25°C

SMALLOUTLINE

(D)

CHIPCARRIER

(FK)

CERAMICDIP(J)

PLASTICDIP(N)

TSSOP(PW)

CERAMICFLATPACK

(W)

0°C to 70°C 2.5 mV TLC2264CD — — TLC2264CN TLC2264CPW —

40°C to 125°C 950 µV TLC2264AID — — TLC2264AIN TLC2264AIPW —–40°C to 125°C µ

2.5 mV TLC2264ID — — TLC2264IN — —

40°C to 125°C 950 µV TLC2264AQD — — — — —–40°C to 125°C µ

2.5 mV TLC2264QD — — — — —

–55°C to 125°C950 µV2.5 mV

——

TLC2264AMFKTLC2264MFK

TLC2264AMJTLC2264MJ

——

——

TLC2264AMWTLC2264MW

The D packages are available taped and reeled. Add R suffix to device type (e.g., TLC2264CDR). The PW package is available only left-end tapedand reeled. Chips are tested at 25°C.

Page 3: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAIL

OPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

3POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2262M, TLC2262AM . . . JG PACKAGE(TOP VIEW)

TLC2262C, TLC2262ACTLC2262I, TLC2262AI

TLC2262Q, TLC2262AQD, P, OR PW PACKAGE

(TOP VIEW)

1

2

3

4

8

7

6

5

1OUT1IN–1IN+

VDD– /GND

VDD+2OUT2IN–2IN+

NCVCC +2OUT2IN –2IN +

NC1OUT1IN –1IN +

VCC– /GND

1

2

3

4

5

10

9

8

7

6

TLC2262M, TLC2262AM . . . U PACKAGE(TOP VIEW)

1

2

3

4

8

7

6

5

1OUT1IN–1IN+

VDD– /GND

VDD+2OUT2IN–2IN+

3 2 1 20 19

9 10 11 12 13

4

5

6

7

8

18

17

16

15

14

NC2OUTNC2IN–NC

NC1IN–

NC1IN+

NC

NC

1OU

TN

C2I

N+

NC

NC

NC

NC

VD

D+

VD

D–

TLC2262M, TLC2262AM . . . FK PACKAGE(TOP VIEW)

/GN

D

1

2

3

4

5

6

7

14

13

12

11

10

9

8

1OUT1IN–1IN+

VDD+2IN+2IN–

2OUT

4OUT4IN–4IN+VDD– /GND3IN+3IN–3OUT

3 2 1 20 19

9 10 11 12 13

4

5

6

7

8

18

17

16

15

14

4IN+NCVCC– /GNDNC3IN+

1IN+NC

VCC+NC

2IN+

1IN

–1O

UT

NC

3OU

T3I

N –

4OU

T4I

N –

2IN

–2O

UT

NC

TLC2264M, TLC2264AM . . . FK PACKAGE(TOP VIEW)

TLC2264C, TLC2264ACTLC2264I, TLC2264AI

TLC2264Q, TLC2264AQD, N, OR PW PACKAGE

(TOP VIEW)

1

2

3

4

5

6

7

14

13

12

11

10

9

8

1OUT1IN–1IN+

VDD+2IN+2IN–

2OUT

4OUT4IN–4IN+VDD– /GND3IN+3IN–3OUT

TLC2264M, TLC2264AM . . . J OR W PACKAGE(TOP VIEW)

NC – No internal connection

NC – No internal connection

NC – No internal connection

Page 4: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAILOPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

equivalent schematic (each amplifier)

Q3 Q6 Q9 Q12 Q14 Q16

Q2 Q5 Q7 Q8 Q10 Q11

D1

Q17Q15Q13

Q4Q1

R5

C1

VDD+

IN+

IN–

R3 R4 R1 R2

OUT

VDD– /GND

ACTUAL DEVICE COMPONENT COUNT†

COMPONENT TLC2262 TLC2264

Transistors 38 76

Resistors 28 56

Diodes 9 18

Capacitors 3 6† Includes both amplifiers and all ESD, bias, and trim circuitry

Page 5: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAIL

OPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

5POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, VDD+ (see Note 1) 8 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supply voltage, VDD– (see Note 1) –8 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Differential input voltage, VID (see Note 2) ±16 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input voltage, VI (any input, see Note 1) VDD– – 0.3 V to VDD+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input current, II (each input) ±5 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output current, IO ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Total current into VDD+ ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Total current out of VDD– ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Duration of short-circuit current at (or below) 25°C (see Note 3) unlimited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Continuous total dissipation See Dissipation Rating Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating free-air temperature range, TA: C suffix 0°C to 70°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I suffix –40°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Q suffix –40°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M suffix –55°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Storage temperature range, Tstg –65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, N, P, and PW packages 260°C. . . . . . .

J, JG, U, and W packages 300°C. . . . . . .

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, andfunctional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is notimplied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VDD+ and VDD – .2. Differential voltages are at IN+ with respect to IN–. Excessive current flows if input is brought below VDD– – 0.3 V.3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum

dissipation rating is not exceeded.

DISSIPATION RATING TABLE

PACKAGETA ≤ 25°C DERATING FACTOR TA = 70°C TA = 85°C TA = 125°C

PACKAGE APOWER RATING ABOVE TA = 25°C

APOWER RATING

APOWER RATING

APOWER RATING

D–8 725 mW 5.8 mW/°C 464 mW 377 mW 145 mW

D–14 950 mW 7.6 mW/°C 608 mW 494 mW 190 mW

FK 1375 mW 11.0 mW/°C 880 mW 715 mW 275 mW

J 1375 mW 11.0 mW/°C 880 mW 715 mW 275 mW

JG 1050 mW 8.4 mW/°C 672 mW 546 mW 210 mW

N 1150 mW 9.2 mW/°C 736 mW 598 mW 230 mW

P 1000 mW 8.0 mW/°C 640 mW 520 mW 200 mW

PW–8 525 mW 4.2 mW/°C 336 mW 273 mW 105 mW

PW–14 700 mW 5.6 mW/°C 448 mW 364 mW 140 mW

U 700 mW 5.5 mW/°C 452 mW 370 mW 150 mW

W 700 mW 5.5 mW/°C 452 mW 370 mW 150 mW

recommended operating conditions

C SUFFIX I SUFFIX Q SUFFIX M SUFFIXUNIT

MIN MAX MIN MAX MIN MAX MIN MAXUNIT

Supply voltage, VDD± ±2.2 ±8 ±2.2 ±8 ±2.2 ±8 ±2.2 ±8 V

Input voltage range, VI VDD– VDD+ –1.5 VDD– VDD+ –1.5 VDD– VDD+ –1.5 VDD– VDD+ –1.5 V

Common-mode input voltage, VIC VDD– VDD+ –1.5 VDD– VDD+ –1.5 VDD– VDD+ –1.5 VDD– VDD+ –1.5 V

Operating free-air temperature, TA 0 70 –40 125 –40 125 –55 125 °C

Page 6: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAILOPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2262C electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwisenoted)

PARAMETER TEST CONDITIONS TA†TLC2262C

UNITPARAMETER TEST CONDITIONS TA†MIN TYP MAX

UNIT

VIO Input offset voltage25°C 300 2500

µVVIO Input offset voltageFull range 3000

µV

αVIO Temperature coefficient of input offset voltage25°C

to 70°C 2 µV/°C

Input offset voltage long-term drift (see Note 4)

VIC = 0,VO = 0,

VDD± = ±2.5 V,RS = 50 Ω

25°C 0.003 µV/mo

IIO Input offset current

O S25°C 0.5

pAIIO Input offset currentFull range 100

pA

IIB Input bias current25°C 1

pAIIB Input bias currentFull range 100

pA

VICR Common mode input voltage range RS = 50 Ω |VIO| ≤ 5 mV

25°C0to4

–0.3to

4.2VVICR Common-mode input voltage range RS = 50 Ω, |VIO| ≤ 5 mV

Full range0to

3.5

V

IOH = –20 µA 25°C 4.99

IOH = 100 µA25°C 4.85 4.94

VOH High-level output voltageIOH = –100 µA

Full range 4.82 V

IOH = 400 µA25°C 4.70 4.85

IOH = –400 µAFull range 4.60

VIC = 2.5 V, IOL = 50 µA 25°C 0.01

VIC = 2 5 V IOL = 500 µA25°C 0.09 0.15

VIC = 2.5 V, IOL = 500 µAFull range 0.15

VOL Low-level output voltageVIC = 2 5 V IOL = 1 A

25°C 0.2 0.3 VVIC = 2.5 V, IOL = 1 A

Full range 0.3

VIC = 2 5 V IOL = 4 A25°C 0.7 1

VIC = 2.5 V, IOL = 4 AFull range 1.2

V 2 5 V R 50 kΩ‡25°C 80 170

AVD Large-signal differential voltage amplificationVIC = 2.5 V,VO = 1 V to 4 V

RL = 50 kهFull range 55 V/mVVD g g g VO = 1 V to 4 V

RL = 1 MΩ‡ 25°C 550

ri(d) Differential input resistance 25°C 1012 Ω

ri(c) Common-mode input resistance 25°C 1012 Ω

ci(c) Common-mode input capacitance f = 10 kHz, P package 25°C 8 pF

zo Closed-loop output impedance f = 100 kHz, AV = 10 25°C 240 Ω

CMRR Common mode rejection ratioVIC = 0 to 2.7 V, VO = 2.5 V, 25°C 70 83

dBCMRR Common-mode rejection ratio IC , O ,RS = 50 Ω Full range 70

dB

kSVR Supply voltage rejection ratio (∆VDD/∆VIO)VDD = 4.4 V to 16 V, 25°C 80 95

dBkSVR Supply-voltage rejection ratio (∆VDD/∆VIO) DD ,VIC = VDD/2, No load Full range 80

dB

IDD Supply current VO = 2 5 V No load25°C 400 500

µAIDD Supply current VO = 2.5 V, No loadFull range 500

µA

† Full range is 0°C to 70°C.‡ Referenced to 2.5 VNOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated

to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Page 7: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAIL

OPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

7POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2262C operating characteristics at specified free-air temperature, VDD = 5 V

PARAMETER TEST CONDITIONS TA†TLC2262C

UNITPARAMETER TEST CONDITIONS TA†MIN TYP MAX

UNIT

SR Slew rate at unity gain VO = 1.5 V to 3.5 V, RL = 50 kΩ‡, 25°C 0.35 0.55V/µsSR Slew rate at unity gain O ,

CL = 100 pF‡L ,

Full range 0.3V/µs

V Equivalent input noise voltagef = 10 Hz 25°C 40

nV/√HzVn Equivalent input noise voltagef = 1 kHz 25°C 12

nV/√Hz

VN(PP)Peak-to-peak equivalent input noise f = 0.1 Hz to 1 Hz 25°C 0.7

µVVN(PP)q

voltage f = 0.1 Hz to 10 Hz 25°C 1.3µV

In Equivalent input noise current 25°C 0.6 fA√Hz

THD + N Total harmonic distortion plus noiseVO = 0.5 V to 2.5 V,f 20 kHz

AV = 125°C

0.017%THD + N Total harmonic distortion plus noise f = 20 kHz,

RL = 50 kΩ‡ AV = 1025°C

0.03%

Gain-bandwidth productf = 10 kHz, CL = 100 pF‡

RL = 50 kΩ‡, 25°C 0.71 MHz

BOM Maximum output-swing bandwidthVO(PP) = 2 V, RL = 50 kه,

AV = 1, CL = 100 pF‡ 25°C 185 kHz

AV = –1, To 0 1% 6 4t Settling time

AV = 1,Step = 0.5 V to 2.5 V,

To 0.1%25°C

6.4µsts Settling time ,

RL = 50 kΩ‡,‡ To 0 01%

25°C14 1

µsL

CL = 100 pF‡ To 0.01% 14.1

φm Phase margin at unity gainRL = 50 kΩ‡ CL = 100 pF‡ 25°C 56°

Gain marginRL = 50 kΩ‡, CL = 100 pF‡

25°C 11 dB

† Full range is 0°C to 70°C.‡ Referenced to 2.5 V

Page 8: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAILOPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2262C electrical characteristics at specified free-air temperature, VDD± = ±5 V (unlessotherwise specified)

PARAMETER TEST CONDITIONS TA†TLC2262C

UNITPARAMETER TEST CONDITIONS TA†MIN TYP MAX

UNIT

VIO Input offset voltage25°C 300 2500

µVVIO Input offset voltageFull range 3000

µV

αVIO Temperature coefficient of input offset voltage25°C

2 µV/°CαVIO Temperature coefficient of input offset voltageto 70°C 2 µV/°C

Input offset voltage long-term drift (see Note 4) VIC = 0,RS = 50 Ω

VO = 0, 25°C 0.003 µV/mo

IIO Input offset current

RS = 50 Ω25°C 0.5

pAIIO Input offset currentFull range 100

pA

IIB Input bias current25°C 1

pAIIB Input bias currentFull range 100

pA

–5 –5.325°C

5to

5.3to

VICR Common mode input voltage range |VIO| ≤5 mV RS = 50 Ω4 4.2

VVICR Common-mode input voltage range |VIO| ≤5 mV, RS = 50 Ω–5

V

Full range5tog

3.5

IO = –20 µA 25°C 4.99

IO = 100 µA25°C 4.85 4.94

VOM+ Maximum positive peak output voltageIO = –100 µA

Full range 4.82 V

IO = 400 µA25°C 4.7 4.85

IO = –400 µAFull range 4.6

VIC = 0, IO = 50 µA 25°C –4.99

VIC = 0 IO = 500 µA25°C –4.85 –4.91

VIC = 0, IO = 500 µAFull range –4.85

VOM– Maximum negative peak output voltageVIC = 0 IO = 1 A

25°C –4.7 –4.8 VVIC = 0, IO = 1 A

Full range –4.7

VIC = 0 IO = 4 A25°C –4 –4.3

VIC = 0, IO = 4 AFull range –3.8

RL = 50 kΩ25°C 80 200

AVD Large-signal differential voltage amplification VO = ±4 VRL = 50 kΩ

Full range 55 V/mV

RL = 1 MΩ 25°C 1000

ri(d) Differential input resistance 25°C 1012 Ω

ri(c) Common-mode input resistance 25°C 1012 Ω

ci(c) Common-mode input capacitance f = 10 kHz, P package 25°C 8 pF

zo Closed-loop output impedance f = 100 kHz, AV = 10 25°C 220 Ω

CMRR Common mode rejection ratioVIC = –5 V to 2.7 V, 25°C 75 88

dBCMRR Common-mode rejection ratio IC ,VO = 0 V, RS = 50 Ω Full range 75

dB

kSVR Supply voltage rejection ratio (∆VDD± /∆VIO)VDD± = 2.2 V to ±8 V, 25°C 80 95

dBkSVR Supply-voltage rejection ratio (∆VDD± /∆VIO) DD± ,VIC = 0, No load Full range 80

dB

IDD Supply current VO = 0 V No load25°C 425 500

µAIDD Supply current VO = 0 V, No loadFull range 500

µA

† Full range is 0°C to 70°C.NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated

to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Page 9: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAIL

OPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

9POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2262C operating characteristics at specified free-air temperature, VDD± = ±5 V

PARAMETER TEST CONDITIONS TA†TLC2262C

UNITPARAMETER TEST CONDITIONS TA†MIN TYP MAX

UNIT

VO = ±1 9 V RL = 50 kΩ25°C 0.35 0.55

SR Slew rate at unity gainVO = ±1.9 V,CL = 100 pF

RL = 50 kΩFull

0 3V/µsCL = 100 F

range0.3

V Equivalent input noise voltagef = 10 Hz 25°C 43

nV/√HzVn Equivalent input noise voltagef = 1 kHz 25°C 12

nV/√Hz

VN(PP)Peak-to-peak equivalent input noise f = 0.1 Hz to 1 Hz 25°C 0.8

µVVN(PP)q

voltage f = 0.1 Hz to 10 Hz 25°C 1.3µV

In Equivalent input noise current 25°C 0.6 fA√Hz

THD + N Total harmonic distortion pulse durationVO = ±2.3 V,f 20 kHz

AV = 125°C

0.014%THD + N Total harmonic distortion pulse duration f = 20 kHz,

RL = 50 kΩ AV = 1025°C

0.024%

Gain bandwidth productf = 10 kHz, RL = 50 kΩ

25°C 0 73 MHzGain-bandwidth product,

CL = 100 pFL 25°C 0.73 MHz

BOM Maximum output swing bandwidthVO(PP) = 4.6 V, AV = 1,

25°C 85 kHzBOM Maximum output-swing bandwidth O(PP)RL = 50 kΩ,

VCL = 100 pF

25°C 85 kHz

AV = –1, To 0 1% 7 1t Settling time

AV = 1,Step = –2.3 V to 2.3 V,

To 0.1%25°C

7.1µsts Settling time ,

RL = 50 kΩ,To 0 01%

25°C16 5

µsL

CL = 100 pF To 0.01% 16.5

φm Phase margin at unity gainRL = 50 kΩ CL = 100 pF

25°C 57°

Gain marginRL = 50 kΩ, CL = 100 pF

25°C 11 dB† Full range is 0°C to 70°C.

Page 10: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAILOPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2264C electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwisenoted)

PARAMETER TEST CONDITIONS TA†TLC2264C

UNITPARAMETER TEST CONDITIONS TA†MIN TYP MAX

UNIT

VIO Input offset voltage25°C 300 2500

µVVIO Input offset voltageFull range 3000

µV

αVIO Temperature coefficient of input offset voltage25°C

to 70°C 2 µV/°C

Input offset voltage long-term drift(see Note 4)

VIC = 0,VO = 0,

VDD± = ±2.5 V,RS = 50 Ω

25°C 0.003 µV/mo

IIO Input offset current

O S25°C 0.5

pAIIO Input offset currentFull range 100

pA

IIB Input bias current25°C 1

pAIIB Input bias currentFull range 100

pA

VICR Common mode input voltage range RS = 50 Ω |VIO| ≤ 5 mV

25°C0to4

–0.3to

4.2VVICR Common-mode input voltage range RS = 50 Ω, |VIO| ≤ 5 mV

Full range0to

3.5

V

IOH = –20 µA 25°C 4.99

IOH = 100 µA25°C 4.85 4.94

VOH High-level output voltageIOH = –100 µA

Full range 4.82 V

IOH = 400 µA25°C 4.70 4.85

IOH = –400 µAFull range 4.60

VIC = 2.5 V, IOL = 50 µA 25°C 0.01

VIC = 2 5 V IOL = 500 µA25°C 0.09 0.15

VIC = 2.5 V, IOL = 500 µAFull range 0.15

VOL Low-level output voltageVIC = 2 5 V IOL = 1 A

25°C 0.2 0.3 VVIC = 2.5 V, IOL = 1 A

Full range 0.3

VIC = 2 5 V IOL = 4 A25°C 0.7 1

VIC = 2.5 V, IOL = 4 AFull range 1.2

V 2 5 V R 50 kΩ‡25°C 80 170

AVD Large-signal differential voltage amplificationVIC = 2.5 V,VO = 1 V to 4 V

RL = 50 kهFull range 55 V/mVVD g g g VO = 1 V to 4 V

RL = 1 MΩ‡ 25°C 550

ri(d) Differential input resistance 25°C 1012 Ω

ri(c) Common-mode input resistance 25°C 1012 Ω

ci(c) Common-mode input capacitance f = 10 kHz, N package 25°C 8 pF

zo Closed-loop output impedance f = 100 kHz, AV = 10 25°C 240 Ω

CMRR Common mode rejection ratioVIC = 0 to 2.7 V, VO = 2.5 V, 25°C 70 83

dBCMRR Common-mode rejection ratio IC ,RS = 50 Ω

O ,

Full range 70dB

kSVR Supply voltage rejection ratio (∆VDD/∆VIO)VDD = 4.4 V to 16 V, 25°C 80 95

dBkSVR Supply-voltage rejection ratio (∆VDD/∆VIO)VIC = VDD/2, No load Full range 80

dB

IDD Supply current (four amplifiers) VO = 2 5 V No load25°C 0.8 1

mAIDD Supply current (four amplifiers) VO = 2.5 V, No loadFull range 1

mA

† Full range is 0°C to 70°C.‡ Referenced to 2.5 VNOTE 4. Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated

to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Page 11: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAIL

OPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

11POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2264C operating characteristics at specified free-air temperature, VDD = 5 V

PARAMETER TEST CONDITIONS T †TLC2264C

UNITPARAMETER TEST CONDITIONS TA†MIN TYP MAX

UNIT

VO = 1 4 V to 2 6 V RL = 50 kΩ‡25°C 0.35 0.55

SR Slew rate at unity gainVO = 1.4 V to 2.6 V,CL = 100 pF‡

RL = 50 kه,Full

0 3V/µs

CL = 100 F‡range

0.3

V Equivalent input noise voltagef = 10 Hz 25°C 40

nV/√HzVn Equivalent input noise voltagef = 1 kHz 25°C 12

nV/√Hz

VN(PP)Peak-to-peak equivalent input noise f = 0.1 Hz to 1 Hz 25°C 0.7

µVVN(PP)q

voltage f = 0.1 Hz to 10 Hz 25°C 1.3µV

In Equivalent input noise current 25°C 0.6 fA /√Hz

THD + N Total harmonic distortion plus noiseVO = 0.5 V to 2.5 V,f 20 kHz

AV = 125°C

0.017%THD + N Total harmonic distortion plus noise f = 20 kHz,

RL = 50 kΩ‡ AV = 1025°C

0.03%

Gain-bandwidth productf = 10 kHz, CL = 100 pF‡

RL = 50 kΩ‡, 25°C 0.71 MHz

BOM Maximum output-swing bandwidthVO(PP) = 2 V, RL = 50 kه,

AV = 1, CL = 100 pF‡ 25°C 185 kHz

AV = –1, To 0 1% 6 4t Settling time

AV = 1,Step = 0.5 V to 2.5 V,

To 0.1%25°C

6.4µsts Settling time ,

RL = 50 kΩ‡,‡ To 0 01%

25°C14 1

µsL

CL = 100 pF‡ To 0.01% 14.1

φm Phase margin at unity gainRL = 50 kΩ‡ CL = 100 pF‡ 25°C 56°

Gain marginRL = 50 kΩ‡, CL = 100 pF‡

25°C 11 dB† Full range is 0°C to 70°C.‡ Referenced to 2.5 V

Page 12: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAILOPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2264C electrical characteristics at specified free-air temperature, VDD± = ±5 V (unlessotherwise specified)

PARAMETER TEST CONDITIONS TA†TLC2264C

UNITPARAMETER TEST CONDITIONS TA†MIN TYP MAX

UNIT

VIO Input offset voltage25°C 300 2500

µVVIO Input offset voltageFull range 3000

µV

αVIO Temperature coefficient of input offset voltage25°C

2 µV/°CαVIO Temperature coefficient of input offset voltageto 70°C 2 µV/°C

Input offset voltage long-term drift (see Note 4) VIC = 0,RS = 50 Ω

VO = 0, 25°C 0.003 µV/mo

IIO Input offset current

RS = 50 Ω25°C 0.5

pAIIO Input offset currentFull range 100

pA

IIB Input bias current25°C 1

pAIIB Input bias currentFull range 100

pA

–5 –5.325°C

5to

5.3to

VICR Common mode input voltage range |VIO| ≤5 mV RS = 50 Ω4 4.2

VVICR Common-mode input voltage range |VIO| ≤5 mV, RS = 50 Ω–5

V

Full range5tog

3.5

IO = –20 µA 25°C 4.99

IO = 100 µA25°C 4.85 4.94

VOM+ Maximum positive peak output voltageIO = –100 µA

Full range 4.82 V

IO = 400 µA25°C 4.7 4.85

IO = –400 µAFull range 4.6

VIC = 0, IO = 50 µA 25°C –4.99

VIC = 0 IO = 500 µA25°C –4.85 –4.91

VIC = 0, IO = 500 µAFull range –4.85

VOM– Maximum negative peak output voltageVIC = 0 IO = 1 A

25°C –4.7 –4.8 VVIC = 0, IO = 1 A

Full range –4.7

VIC = 0 IO = 4 A25°C –4 –4.3

VIC = 0, IO = 4 AFull range –3.8

RL = 50 kΩ25°C 80 200

AVD Large-signal differential voltage amplification VO = ±4 VRL = 50 kΩ

Full range 55 V/mV

RL = 1 MΩ 25°C 1000

ri(d) Differential input resistance 25°C 1012 Ω

ri(c) Common-mode input resistance 25°C 1012 Ω

ci(c) Common-mode input capacitance f = 10 kHz, N package 25°C 8 pF

zo Closed-loop output impedance f = 100 kHz, AV = 10 25°C 220 Ω

CMRR Common mode rejection ratioVIC = –5 V to 2.7 V, 25°C 75 88

dBCMRR Common-mode rejection ratioVO = 0, RS = 50 Ω Full range 75

dB

kSVR Supply voltage rejection ratio (∆VDD± /∆VIO)VDD± = ±2.2 V to ±8 V, 25°C 80 95

dBkSVR Supply-voltage rejection ratio (∆VDD± /∆VIO)VIC = 0, No load Full range 80

dB

IDD Supply current (four amplifiers) VO = 0 No load25°C 0.85 1

mAIDD Supply current (four amplifiers) VO = 0, No loadFull range 1

mA

† Full range is 0°C to 70°C.NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated

to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Page 13: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAIL

OPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

13POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2264C operating characteristics at specified free-air temperature, VDD± = ±5 V

PARAMETER TEST CONDITIONS T †TLC2264C

UNITPARAMETER TEST CONDITIONS TA†MIN TYP MAX

UNIT

VO = ±1 9 V RL = 50 kΩ25°C 0.35 0.55

SR Slew rate at unity gainVO = ±1.9 V,CL = 100 pF

RL = 50 kΩ,Full

0 3V/µsCL = 100 F

range0.3

V Equivalent input noise voltagef = 10 Hz 25°C 43

nV/√HzVn Equivalent input noise voltagef = 1 kHz 25°C 12

nV/√Hz

VN(PP)Peak-to-peak equivalent input noise f = 0.1 Hz to 1 Hz 25°C 0.8

µVVN(PP)q

voltage f = 0.1 Hz to 10 Hz 25°C 1.3µV

In Equivalent input noise current 25°C 0.6 fA /√Hz

THD + N Total harmonic distortion plus noiseVO = ± 2.3 V,f 20 kHz

AV = 125°C

0.014%THD + N Total harmonic distortion plus noise f = 20 kHz,

RL = 50 kΩ AV = 1025°C

0.024%

Gain bandwidth productf = 10 kHz, RL = 50 kΩ,

25°C 0 73 MHzGain-bandwidth product,

CL = 100 pFL ,

25°C 0.73 MHz

BOM Maximum output swing bandwidthVO(PP) = 4.6 V, AV = 1,

25°C 70 kHzBOM Maximum output-swing bandwidth O(PP) ,RL = 50 kΩ,

V ,CL = 100 pF

25°C 70 kHz

AV = –1, To 0 1% 7 1

t Settling time

AV = 1,Step = –2.3 V to 2.3 V,

To 0.1%25°C

7.1µsts Settling time ,

RL = 50 kΩ,To 0 01%

25°C16 5

µsL

CL = 100 pF To 0.01% 16.5

φm Phase margin at unity gainRL = 50 kΩ CL = 100 pF

25°C 57°

Gain marginRL = 50 kΩ, CL = 100 pF

25°C 11 dB† Full range is 0°C to 70°C.

Page 14: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAILOPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2262I electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwisenoted)

PARAMETER TEST CONDITIONS TA†TLC2262I TLC2262AI

UNITPARAMETER TEST CONDITIONS TA†MIN TYP MAX MIN TYP MAX

UNIT

VIO Input offset voltage25°C 300 2500 300 950

µVVIO Input offset voltageFull range 3000 1500

µV

αVIO

Temperaturecoefficient

25°C2 2 µV/°CαVIO coefficient

of input offset voltageto 85°C 2 2 µV/°C

Input offset voltagelong-term drift (see Note 4)

VDD± = ±2.5 V,VO = 0,

VIC = 0,RS = 50 Ω

25°C 0.003 0.003 µV/mo

O , S25°C 0.5 0.5

pAIIO Input offset current 85°C 150 150

pA

Full range 800 800 pA

I25°C 1 1 pA

IIB Input bias current 85°C 150 150 pA

Full range 800 800 pA

0 –0.3 0 –0.325°C to to to to

VICRCommon-mode input

RS = 50 Ω |VIO| ≤5 mV4 4.2 4 4.2

VVICR voltage range RS = 50 Ω, |VIO| ≤5 mV0 0

V

Full range to tog3.5 3.5

IOH = –20 µA 25°C 4.99 4.99

High level output IOH = 100 µA25°C 4.85 4.94 4.85 4.94

VOHHigh-level outputvoltage

IOH = –100 µAFull range 4.82 4.82 V

voltage

IOH = 400 µA25°C 4.7 4.85 4.7 4.85

IOH = –400 µAFull range 4.5 4.5

VIC = 2.5 V, IOL = 50 µA 25°C 0.01 0.01

Low level output VIC = 2 5 V IOL = 500 µA25°C 0.09 0.15 0.09 0.15

VOLLow-level outputvoltage

VIC = 2.5 V, IOL = 500 µAFull range 0.15 0.15 V

voltage

VIC = 2 5 V IOL = 4 A25°C 0.8 1 0.7 1

VIC = 2.5 V, IOL = 4 AFull range 1.2 1.2

Large-signalV 2 5 V RL 50 kه

25°C 80 100 80 170

AVD

Large signaldifferential

VIC = 2.5 V,VO = 1 V to 4 V

RL = 50 kهFull range 50 50 V/mVVD

voltage amplificationVO = 1 V to 4 V

RL = 1 MΩ‡ 25°C 550 550

ri(d)Differential inputresistance

25°C 1012 1012 Ω

ri(c)Common-mode inputresistance

25°C 1012 1012 Ω

ci(c)Common-mode inputcapacitance

f = 10 kHz, P package 25°C 8 8 pF

zoClosed-loop outputimpedance

f = 100 kHz, AV = 10 25°C 240 240 Ω

CMRRCommon-mode VIC = 0 to 2.7 V, VO = 2.5 V, 25°C 70 83 70 83

dBCMRRrejection ratio

IC , O ,RS = 50 Ω Full range 70 70

dB

† Full range is – 40°C to 125°C.‡ Referenced to 2.5 VNOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated

to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Page 15: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAIL

OPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

15POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2262I operating characteristics at specified free-air temperature, VDD = 5 V

PARAMETER TEST CONDITIONS TA†TLC2262I TLC2262AI

UNITPARAMETER TEST CONDITIONS TA†MIN TYP MAX MIN TYP MAX

UNIT

Supply-voltage re-VDD = 4 4 V to 16 V

25°C 80 95 80 95

kSVR

y gjection ratio(∆VDD/∆VIO)

VDD = 4.4 V to 16 V,VIC = VDD/2, No load Full

range80 80

dB

25°C 400 500 400 500

IDD Supply current VO = 2.5 V, No load Fullrange

500 500µA

Slew rate at unity VO = 1 5 V to 3 5 V RL 50 kΩ‡25°C 0.35 0.55 0.35 0.55

SRSlew rate at unitygain

VO = 1.5 V to 3.5 V,CL = 100 pF‡

RL = 50 kه,Full

0 25 0 25V/µs

gain CL = 100 F‡range

0.25 0.25

VEquivalent input f = 10 Hz 25°C 40 40

nV/√HzVnq

noise voltage f = 1 kHz 25°C 12 12nV/√Hz

VN(PP)

Peak-to-peakequivalent input

f = 0.1 Hz to 1 Hz 25°C 0.7 0.7µVVN(PP) equivalent input

noise voltage f = 0.1 Hz to 10 Hz 25°C 1.3 1.3µV

InEquivalent inputnoise current

25°C 0.6 0.6 fA√Hz

THD + NTotal harmonicdistortion plus

VO = 0.5 V to 2.5 V,f 20 kHz

AV = 125°C

0.017% 0.017%THD + N distortion plus

noisef = 20 kHz,RL = 50 kه AV = 10

25°C0.03% 0.03%

Gain-bandwidth f = 50 kHz, RL = 50 kΩ‡, 25°C 0 82 0 82 MHzproduct

f 50 kHz,CL = 100 pF‡

RL 50 kΩ , 25°C 0.82 0.82 MHz

BOMMaximum output- VO(PP) = 2 V, AV = 1,

25°C 185 185 kHzBOM swing bandwidthO(PP) ,

RL = 50 kه,V ,

CL = 100 pF‡ 25°C 185 185 kHz

AV = –1, To 0 1% 6 4 6 4t Settling time

AV = 1,Step = 0.5 V to 2.5 V,

To 0.1%25°C

6.4 6.4µsts Settling time ,

RL = 50 kΩ‡,‡ To 0 01%

25°C14 1 14 1

µsL

CL = 100 pF‡ To 0.01% 14.1 14.1

φmPhase margin atunity gain RL = 50 kΩ‡, CL = 100 pF‡

25°C 56° 56°

Gain marginL , L

25°C 11 11 dB† Full range is – 40°C to 125°C.‡ Referenced to 2.5 V

Page 16: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAILOPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2262I electrical characteristics at specified free-air temperature, VDD± = ±5 V (unless otherwisenoted)

PARAMETER TEST CONDITIONS TA†TLC2262I TLC2262AI

UNITPARAMETER TEST CONDITIONS TA†MIN TYP MAX MIN TYP MAX

UNIT

VIO Input offset voltage25°C 300 2500 300 950

µVVIO Input offset voltageFull range 3000 1500

µV

αVIOTemperature coefficient of 25°C

2 2 µV/°CαVIO input offset voltage to 85°C 2 2 µV/°C

Input offset voltagelong-term drift (see Note 4) VIC = 0,

R 50 ΩVO = 0

25°C 0.003 0.003 µV/mo

RS = 50 Ω 25°C 0.5 0.5 pA

IIO Input offset current 85°C 150 150 pA

Full range 800 800 pA

25°C 1 1 pA

IIB Input bias current 85°C 150 150 pA

Full range 800 800 pA

25°C –5 –5.3 –5 –5.3

VICRCommon-mode input

RS = 50 Ω |VIO| ≤5 mV

25°Cto 4 to 4.2 to 4 to 4.2

VVICR voltage rangeRS = 50 Ω, |VIO| ≤5 mV

Full range–5 –5

V

Full rangeto 3.5 to 3.5

IO = –20 µA 25°C 4.99 4.99

M i iti k IO = 100 µA25°C 4.85 4.94 4.85 4.94

VOM+Maximum positive peakoutput voltage

IO = –100 µAFull range 4.82 4.82 V

out ut voltage

IO = 400 µA25°C 4.7 4.85 4.7 4.85

IO = –400 µAFull range 4.5 4.5

VIC = 0, IO = 50 µA 25°C –4.99 –4.99

M i ti k VIC = 0 IO = 500 µA25°C –4.85 –4.91 –4.85 –4.91

VOM–Maximum negative peakoutput voltage

VIC = 0, IO = 500 µAFull range –4.85 –4.85 V

out ut voltage

VIC = 0 IO = 4 A25°C –4 –4.3 –4 –4.3

VIC = 0, IO = 4 AFull range –3.8 –3.8

L i l diff ti l RL = 50 kΩ25°C 80 200 80 200

AVDLarge-signal differentialvoltage amplification

VO = ±4 VRL = 50 kΩ

Full range 50 50 V/mVvoltage am lification

RL = 1 MΩ 25°C 1000 1000

ri(d)Differential inputresistance

25°C 1012 1012 Ω

ri(c)Common-mode inputresistance

25°C 1012 1012 Ω

ci(c)Common-mode inputcapacitance

f = 10 kHz, P package 25°C 8 8 pF

zoClosed-loop output impedance

f = 100 kHz, AV = 10 25°C 220 220 Ω

CMRRCommon-mode VIC = –5 V to 2.7 V, 25°C 75 88 75 88

dBCMRRrejection ratio

IC ,VO = 0, RS = 50 Ω Full range 75 75

dB

kSVRSupply-voltage rejection VDD = 4.4 V to 16 V, 25°C 80 95 80 95

dBkSVRy g j

ratio (∆VDD± /∆VIO)DD ,

VIC = VDD/2, No load Full range 80 80dB

† Full range is – 40°C to 125°C.NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated

to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Page 17: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAIL

OPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

17POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2262I operating characteristics at specified free-air temperature, VDD± = ±5 V

PARAMETER TEST CONDITIONS TA†TLC2262I TLC2262AI

UNITPARAMETER TEST CONDITIONS TA†MIN TYP MAX MIN TYP MAX

UNIT

25°C 425 500 425 500

IDD Supply Current VO = 2.5 V, No load Fullrange

500 500

Slew rate at unity VO = ±1 9 V RL = 50 kΩ25°C 0.35 0.55 0.35 0.55

SRSlew rate at unitygain

VO = ±1.9 V, CL = 100 pF

RL = 50 kΩ,Full

0 25 0 25V/µsgain CL = 100 F

range0.25 0.25

VEquivalent input f = 10 Hz 25°C 43 43

nV/√HzVnq

noise voltage f = 1 kHz 25°C 12 12nV/√Hz

VN(PP)

Peak-to-peakequivalent input

f = 0.1 Hz to 1 Hz 25°C 0.8 0.8µVVN(PP) equivalent input

noise voltage f = 0.1 Hz to 10 Hz 25°C 1.3 1.3µV

InEquivalent inputnoise current

25°C 0.6 0.6 fA√Hz

THD + NTotal harmonicdistortion plus

VO = ±2.3 V,RL 50 kΩ

AV = 125°C

0.014% 0.014%THD + N distortion plus

noiseRL = 50 kΩ,f = 20 kHz AV = 10

25°C0.024% 0.024%

Gain-bandwidth f =10 kHz, RL = 50 kΩ,25°C 0 73 0 73 MHz

product,

CL = 100 pFL ,

25°C 0.73 0.73 MHz

BOM

Maximumoutput swing

VO(PP) = 4.6 V, AV = 1,25°C 85 85 kHzBOM output-swing

bandwidth

O(PP) ,RL = 50 kΩ,

V ,CL = 100 pF

25°C 85 85 kHz

AV = –1, To 0 1% 7 1 7 1

t Settling time

AV = 1,Step = –2.3 V to 2.3 V,

To 0.1%25°C

7.1 7.1µsts Settling time ,

RL = 50 kΩ,To 0 01%

25°C16 5 16 5

µsL

CL = 100 pF To 0.01% 16.5 16.5

φmPhase margin atunity gain RL = 50 kΩ, CL = 100 pF

25°C 57° 57°

Gain marginL L

25°C 11 11 dB† Full range is –40°C to 125°C.

Page 18: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAILOPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

18 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2264I electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwisenoted)

PARAMETER TEST CONDITIONS T †TLC2264I TLC2264AI

UNITPARAMETER TEST CONDITIONS TA†MIN TYP MAX MIN TYP MAX

UNIT

VIO Input offset voltage25°C 300 2500 300 950

µVVIO Input offset voltageFull range 3000 1500

µV

αVIOTemperature coefficientof input offset voltage

25°Cto 125°C 2 2 µV/°C

Input offset voltagelong-term drift (see Note 4) VDD± =±2.5 V, VIC = 0,

25°C 0.003 0.003 µV/moVDD± ±2.5 V,VO = 0,

VIC 0,RS = 50 Ω 25°C 0.5 0.5

IIO Input offset current 85°C 150 150 pA

Full range 800 800

25°C 1 1

IIB Input bias current 85°C 150 150 pA

Full range 800 800

VICRCommon-mode input

RS = 50 Ω |VIO| ≤5 mV

25°C0to4

–0.3to

4.2

0to4

–0.3to

4.2VVICR voltage range RS = 50 Ω, |VIO| ≤5 mV

Full range0to

3.5

0to

3.5

V

IOH = –20 µA 25°C 4.99 4.99

High level output IOH = 100 µA25°C 4.85 4.94 4.85 4.94

VOHHigh-level outputvoltage

IOH = –100 µAFull range 4.82 4.82 V

voltage

IOH = 400 µA25°C 4.7 4.85 4.7 4.85

IOH = –400 µAFull range 4.5 4.5

VIC = 2.5 V, IOL = 50 µA 25°C 0.01 0.01

Low level output VIC = 2 5 V IOL = 500 µA25°C 0.09 0.15 0.09 0.15

VOLLow-level outputvoltage

VIC = 2.5 V, IOL = 500 µAFull range 0.15 0.15 V

voltage

VIC = 2 5 V IOL = 4 A25°C 0.8 1 0.7 1

VIC = 2.5 V, IOL = 4 AFull range 1.2 1.2

Large signal differential V 2 5 V RL 50 kΩ‡25°C 80 100 80 170

AVDLarge-signal differentialvoltage amplification

VIC = 2.5 V,VO = 1 V to 4 V

RL = 50 kهFull range 50 50 V/mVVD voltage am lification VO = 1 V to 4 V

RL = 1 MΩ‡ 25°C 550 550

ri(d)Differential inputresistance

25°C 1012 1012 Ω

ri(c)Common-mode input resistance

25°C 1012 1012 Ω

ci(c)Common-mode input capacitance

f = 10 kHz, N package 25°C 8 8 pF

zoClosed-loopoutput impedance

f = 100 kHz, AV = 10 25°C 240 240 Ω

CMRRCommon-mode VIC = 0 to 2.7 V, VO = 2.5 V, 25°C 70 83 70 83

dBCMRR rejection ratioIC

RS = 50 ΩO

Full range 70 70dB

kSVR

Supply-voltagerejection ratio

VDD = 4.4 V to 16 V, 25°C 80 95 80 95dBkSVR rejection ratio

(∆VDD/∆VIO) VIC = VDD/2, No load Full range 80 80dB

† Full range is – 40°C to 125°C.‡ Referenced to 2.5 VNOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated

to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Page 19: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAIL

OPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

19POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2264I operating characteristics at specified free-air temperature, VDD = 5 V

PARAMETER TEST CONDITIONS T †TLC2264I TLC2264AI

UNITPARAMETER TEST CONDITIONS TA†MIN TYP MAX MIN TYP MAX

UNIT

Supply current25°C 0.8 1 0.8 1

IDDSupply current(four amplifiers) VO = 2.5 V, No load Full

range1 1

V/µs

Slew rate at unity VO 1 4 V to 2 6 V RL 50 kΩ‡25°C 0.35 0.55 0.35 0.55

SRSlew rate at unitygain

VO = 1.4 V to 2.6 V,CL = 100 pF‡

RL = 50 kه,Full

0 25 0 25V/µs

gain CL = 100 F‡range

0.25 0.25

VEquivalent input f = 10 Hz 25°C 40 40

nV/√HzVnq

noise voltage f = 1 kHz 25°C 12 12nV/√Hz

VN(PP)

Peak-to-peakequivalent input

f = 0.1 Hz to 1 Hz 25°C 0.7 0.7µVVN(PP) equivalent input

noise voltage f = 0.1 Hz to 10 Hz 25°C 1.3 1.3µV

InEquivalent inputnoise current

25°C 0.6 0.6 fA /√Hz

THD + NTotal harmonicdistortion plus

VO = 0.5 V to 2.5 V,f 20 kHz

AV = 125°C

0.017% 0.017%THD + N distortion plus

noisef = 20 kHz,RL = 50 kه AV = 10

25°C0.03% 0.03%

Gain-bandwidth f = 50 kHz, RL = 50 kΩ‡, 25°C 0 71 0 71 MHzproduct

f 50 kHz,CL = 100 pF‡

RL 50 kΩ , 25°C 0.71 0.71 MHz

BOMMaximum output- VO(PP) = 2 V, AV = 1,

25°C 185 185 kHzBOM swing bandwidthO(PP) ,

RL = 50 kه,V ,

CL = 100 pF‡ 25°C 185 185 kHz

AV = –1, To 0 1% 6 4 6 4t Settling time

AV = 1,Step = 0.5 V to 2.5 V,

To 0.1%25°C

6.4 6.4µsts Settling time ,

RL = 50 kΩ‡,‡ To 0 01%

25°C14 1 14 1

µsL

CL = 100 pF‡ To 0.01% 14.1 14.1

φmPhase margin atunity gain RL = 50 kΩ‡, CL = 100 pF‡

25°C 56° 56°

Gain marginL , L

25°C 11 11 dB† Full range is – 40°C to 125°C.‡ Referenced to 2.5 V

Page 20: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAILOPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

20 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2264I electrical characteristics at specified free-air temperature, VDD± = ±5 V (unless otherwisenoted)

PARAMETER TEST CONDITIONS TA† TLC2264I TLC2264AIUNITPARAMETER TEST CONDITIONS TA†

MIN TYP MAX MIN TYP MAXUNIT

VIO Input offset voltage25°C 300 2500 300 950

µVVIO Input offset voltageFull range 3000 1500

µV

αVIOTemperature coefficient of 25°C

2 2 µV/°CαVIO input offset voltage to 125°C 2 2 µV/°C

Input offset voltagelong-term drift (see Note 4) VIC = 0,

RS 50 ΩVO = 0,

25°C 0.003 0.003 µV/mo

RS = 50 Ω25°C 0.5 0.5

IIO Input offset current 85°C 150 150 pA

Full range 800 800

25°C 1 1 pA

IIB Input bias current 85°C 150 150 pA

Full range 800 800 pA

–5 –5.3 –5 –5.325°C to to to to

VICRCommon-mode input

RS = 50 Ω |VIO| ≤5 mV4 4.2 4 4.2

VVICR voltage range RS = 50 Ω, |VIO| ≤5 mV–5 –5

V

Full range to tog3.5 3.5

IO = –20 µA 25°C 4.99 4.99

Maximum positive peak IO = 100 µA25°C 4.85 4.94 4.85 4.94

VOM+Maximum positive peakoutput voltage

IO = –100 µAFull range 4.82 4.82 V

out ut voltage

IO = 400 µA25°C 4.7 4.85 4.7 4.85

IO = –400 µAFull range 4.5 4.5

VIC = 0, IO = 50 µA 25°C –4.99 –4.99

Maximum negative peak VIC = 0 IO = 500 µA25°C –4.85 –4.91 –4.85 –4.91

VOM–Maximum negative peakoutput voltage

VIC = 0, IO = 500 µAFull range –4.85 –4.85 V

out ut voltage

VIC = 0 IO = 4 A25°C –4 –4.3 –4 –4.3

VIC = 0, IO = 4 AFull range –3.8 –3.8

Large signal differential RL = 50 kΩ25°C 80 200 80 200

AVDLarge-signal differentialvoltage amplification

VO = ±4 VRL = 50 kΩ

Full range 50 50 V/mVvoltage am lification

RL = 1 MΩ 25°C 1000 1000

ri(d)Differential inputresistance

25°C 1012 1012 Ω

ri(c)Common-mode inputresistance

25°C 1012 1012 Ω

ci(c)Common-mode inputcapacitance

f = 10 kHz, N package 25°C 8 8 pF

zoClosed-loop outputimpedance

f = 100 kHz, AV = 10 25°C 220 220 Ω

CMRRCommon-mode VIC = –5 V to 2.7 V, 25°C 75 88 75 88

dBCMRR rejection ratio VO = 0, RS = 50 Ω Full range 75 75dB

kSVRSupply-voltage rejection VDD± = ±2.2 V to ±8 V, 25°C 80 95 80 95

dBkSVRy g j

ratio (∆VDD± /∆VIO) VIC = VDD/2, No load Full range 80 80dB

† Full range is – 40°C to 125°C.NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated

to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Page 21: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAIL

OPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

21POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2264I operating characteristics at specified free-air temperature, VDD± = ±5 V

PARAMETER TEST CONDITIONS T †TLC2264I TLC2264AI

UNITPARAMETER TEST CONDITIONS TA†MIN TYP MAX MIN TYP MAX

UNIT

Supply current25°C 0.85 1 0.85 1

IDDSupply current(four amplifiers) VO = 0, No load Full

range1 1

Slew rate at unity VO = ±1 9 V RL = 50 kΩ25°C 0.35 0.55 0.35 0.55

SRSlew rate at unitygain

VO = ±1.9 V,CL = 100 pF

RL = 50 kΩ,Full

0 25 0 25V/µsgain CL = 100 F

range0.25 0.25

VEquivalent input f = 10 Hz 25°C 43 43

nV/√HzVnq

noise voltage f = 1 kHz 25°C 12 12nV/√Hz

VN(PP)

Peak-to-peakequivalent input

f = 0.1 Hz to 1 Hz 25°C 0.8 0.8µVVN(PP) equivalent input

noise voltage f = 0.1 Hz to 10 Hz 25°C 1.3 1.3µV

InEquivalent inputnoise current

25°C 0.6 0.6 fA /√Hz

THD + NTotal harmonicdistortion plus

VO = ±2.3 V,RL 50 kΩ

AV = 125°C

0.014% 0.014%THD + N distortion plus

noiseRL = 50 kΩ,f = 20 kHz AV = 10

25°C0.024% 0.024%

Gain-bandwidth f =10 kHz, RL = 50 kΩ,25°C 0 73 0 73 MHz

product,

CL = 100 pFL ,

25°C 0.73 0.73 MHz

BOMMaximum output- VO(PP) = 4.6 V, AV = 1,

25°C 70 70 kHzBOM swing bandwidthO(PP) ,

RL = 50 kΩ,V ,

CL = 100 pF25°C 70 70 kHz

AV = –1, To 0 1% 7 1 7 1t Settling time

AV = 1,Step = –2.3 V to 2.3 V,

To 0.1%25°C

7.1 7.1µsts Settling time ,

RL = 50 kΩ,To 0 01%

25°C16 5 16 5

µsL

CL = 100 pF To 0.01% 16.5 16.5

φmPhase margin atunity gain RL = 50 kΩ, CL = 100 pF

25°C 57° 57°

Gain marginL L

25°C 11 11 dB† Full range is –40°C to 125°C.

Page 22: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAILOPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

22 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2262Q/M electrical characteristics at specified free-air temperature, VDD = 5 V (unlessotherwise noted)

PARAMETER TEST CONDITIONS TA†TLC2262Q,TLC2262M

TLC2262AQ,TLC2262AM UNITA

MIN TYP MAX MIN TYP MAX

VIO Input offset voltage25°C 300 2500 300 950

µVVIO Input offset voltageFull range 3000 1500

µV

αVIOTemperature coefficient

Full range 5 5 µV/°CαVIO of input offset voltage Full range 5 5 µV/°C

Input offset voltagelong-term drift (see Note 4)

VDD± = ±2.5 V,VO = 0,

VIC = 0,RS = 50 Ω 25°C 0.003 0.003 µV/mo

IIO Input offset current25°C 0.5 0.5

pAIIO Input offset current125°C 800 800

pA

IIB Input bias current25°C 1 1

pAIIB Input bias current125°C 800 800

pA

25°C 0 to 4–0.3

0 to 4–0.3

VICRCommon-mode input

RS = 50 Ω |VIO| ≤5 mV25°C 0 to 4 to 4.2 0 to 4 to 4.2

VVICR voltage range RS = 50 Ω, |VIO| ≤5 mV0 to 0 to

Vg gFull range

0 to3 5

0 to3 5Full range 3.5 3.5

IOH = –20 µA 25°C 4.99 4.99

High level output IOH = 100 µA25°C 4.85 4.94 4.85 4.94

VOHHigh-level outputvoltage

IOH = –100 µAFull range 4.82 4.82 V

voltage

IOH = 400 µA25°C 4.7 4.85 4.7 4.85

IOH = –400 µAFull range 4.5 4.5

VIC = 2.5 V, IOL = 50 µA 25°C 0.01 0.01

Low level output VIC = 2 5 V IOL = 500 µA25°C 0.09 0.15 0.09 0.15

VOLLow-level outputvoltage

VIC = 2.5 V, IOL = 500 µAFull range 0.15 0.15 V

voltage

VIC = 2 5 V IOL = 4 A25°C 0.8 1 0.7 1

VIC = 2.5 V, IOL = 4 AFull range 1.2 1.2

Large signal differential V 2 5 V RL 50 kΩ‡25°C 80 100 80 170

AVDLarge-signal differentialvoltage amplification

VIC = 2.5 V,VO = 1 V to 4 V

RL = 50 kهFull range 50 50 V/mVVD voltage am lification VO = 1 V to 4 V

RL = 1 MΩ‡ 25°C 550 550

ri(d)Differential inputresistance

25°C 1012 1012 Ω

ri(c)Common-mode inputresistance

25°C 1012 1012 Ω

ci(c)Common-mode inputcapacitance

f = 10 kHz, P package 25°C 8 8 pF

zoClosed-loop outputimpedance

f = 100 kHz, AV = 10 25°C 240 240 Ω

CMRRCommon-mode VIC = 0 to 2.7 V, VO = 2.5 V, 25°C 70 83 70 83

dBCMRR rejection ratioIC O

RS = 50 Ω Full range 70 70dB

kSVRSupply-voltage rejection VDD = 4.4 V to 16 V, 25°C 80 95 80 95

dBkSVRy g j

ratio (∆VDD/∆VIO)DD

VIC = VDD/2, No load Full range 80 80dB

IDD Supply current VO = 2 5 V No load25°C 400 500 400 500

µAIDD Supply current VO = 2.5 V, No loadFull range 500 500

µA

† Full range is –40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix.‡ Referenced to 2.5 VNOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated

to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Page 23: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAIL

OPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

23POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2262Q/M operating characteristics at specified free-air temperature, VDD = 5 V

PARAMETER TEST CONDITIONS TA†TLC2262Q,TLC2262M

TLC2262AQ,TLC2262AM UNITA

MIN TYP MAX MIN TYP MAX

Slew rate at unity VO = 0 5 V to 3 5 V RL 50 kΩ‡25°C 0.35 0.55 0.35 0.55

SRSlew rate at unitygain

VO = 0.5 V to 3.5 V,CL = 100 pF‡

RL = 50 kه,Full

0 25 0 25V/µs

gain CL = 100 F‡range

0.25 0.25

VEquivalent input f = 10 Hz 25°C 40 40

nV/√HzVnq

noise voltage f = 1 kHz 25°C 12 12nV/√Hz

VN(PP)

Peak-to-peakequivalent input

f = 0.1 Hz to 1 Hz 25°C 0.7 0.7µVVN(PP) equivalent input

noise voltage f = 0.1 Hz to 10 Hz 25°C 1.3 1.3µV

InEquivalent inputnoise current

25°C 0.6 0.6 fA√Hz

THD + NTotal harmonicdistortion plus

VO = 0.5 V to 2.5 V,f 20 kHz

AV = 125°C

0.017% 0.017%THD + N distortion plus

noisef = 20 kHz,RL = 50 kه AV = 10

25°C0.03% 0.03%

Gain-bandwidth f = 50 kHz, RL = 50 kΩ‡, 25°C 0 82 0 82 MHzproduct

f 50 kHz,CL = 100 pF‡

RL 50 kΩ , 25°C 0.82 0.82 MHz

BOMMaximum output- VO(PP) = 2 V, AV = 1,

25°C 185 185 kHzBOM swing bandwidthO(PP) ,

RL = 50 kه,V ,

CL = 100 pF‡ 25°C 185 185 kHz

AV = –1, To 0 1% 6 4 6 4

t Settling time

AV = 1,Step = 0.5 V to 2.5 V,

To 0.1%25°C

6.4 6.4µsts Settling time ,

RL = 50 kΩ‡,‡ To 0 01%

25°C14 1 14 1

µsL

CL = 100 pF‡ To 0.01% 14.1 14.1

φmPhase margin atunity gain RL = 50 kΩ‡, CL = 100 pF‡

25°C 56° 56°

Gain marginL , L

25°C 11 11 dB

† Full range is –40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix.‡ Referenced to 2.5 V

Page 24: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAILOPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

24 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2262Q/M electrical characteristics at specified free-air temperature, VDD± = ±5 V (unlessotherwise noted)

PARAMETER TEST CONDITIONS TA†TLC2262Q,TLC2262M

TLC2262AQ,TLC2262AM UNITA

MIN TYP MAX MIN TYP MAX

VIO Input offset voltage25°C 300 2500 300 950

µVVIO Input offset voltageFull range 3000 1500

µV

αVIOTemperature coefficient ofinput offset voltage

Full range 5 5 µV/°C

Input offset voltage long-term drift (see Note 4)

VIC = 0,RS = 50 Ω

VO = 0, 25°C 0.003 0.003 µV/mo

IIO Input offset current25°C 0.5 0.5

pAIIO Input offset current125°C 800 800

pA

IIB Input bias current25°C 1 1

pAIIB Input bias current125°C 800 800

pA

VICRCommon-mode input

RS = 50 Ω |VIO| ≤ 5 mV

25°C–5

to 4–5.3to 4

–5to 4

–5.3to 4.2

VVICR voltage range RS = 50 Ω, |VIO| ≤ 5 mVFull range

–5to 3.5

–5to 3.5

V

IO = –20 µA 25°C 4.99 4.99

Maximum positive peak IO = 100 µA25°C 4.85 4.94 4.85 4.94

VOM+Maximum positive peakoutput voltage

IO = –100 µAFull range 4.82 4.82 V

out ut voltage

IO = 400 µA25°C 4.7 4.85 4.7 4.85

IO = –400 µAFull range 4.5 4.5

VIC = 0, IO = 50 µA 25°C –4.99 –4.99

Maximum negative peak VIC = 0 IO = 500 µA25°C –4.85 –4.91 –4.85 –4.91

VOM–Maximum negative peakoutput voltage

VIC = 0, IO = 500 µAFull range –4.85 –4.85 V

out ut voltage

VIC = 0 IO = 4 A25°C –4 –4.3 –4 –4.3

VIC = 0, IO = 4 AFull range –3.8 –3.8

Large signal differential RL = 50 kΩ25°C 80 200 80 200

AVDLarge-signal differentialvoltage amplification

VO = ±4 VRL = 50 kΩ

Full range 50 50 V/mVvoltage am lification

RL = 1 MΩ 25°C 1000 1000

ri(d)Differential input resistance

25°C 1012 1012 Ω

ri(c)Common-mode inputresistance

25°C 1012 1012 Ω

ci(c)Common-mode inputcapacitance

f = 10 kHz, P package 25°C 8 8 pF

zoClosed-loop output impedance

f = 100 kHz, AV = 10 25°C 220 220 Ω

CMRRCommon-mode VIC = –5 V to 2.7 V, 25°C 75 88 75 88

dBCMRR rejection ratioIC

VO = 0, RS = 50 Ω Full range 75 75dB

kSVRSupply-voltage rejection VDD = 4.4 V to 16 V, 25°C 80 95 80 95

dBkSVRy g j

ratio (∆VDD± /∆VIO)DD

VIC = VDD/2, No load Full range 80 80dB

IDD Supply current VO = 0 No load25°C 425 500 425 500

µAIDD Supply current VO = 0, No loadFull range 500 500

µA

† Full range is –40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix.NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated

to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Page 25: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAIL

OPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

25POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2262Q/M operating characteristics at specified free-air temperature, VDD± = ±5 V

PARAMETER TEST CONDITIONS TA†TLC2262Q,TLC2262M

TLC2262AQ,TLC2262AM UNITA

MIN TYP MAX MIN TYP MAX

Slew rate at unity VO = ±2 V RL = 50 kΩ25°C 0.35 0.55 0.35 0.55

SRSlew rate at unitygain

VO = ±2 V, CL = 100 pF

RL = 50 kΩ,Full

0 25 0 25V/µsgain CL = 100 F

range0.25 0.25

VEquivalent input f = 10 Hz 25°C 43 43

nV/√HzVnq

noise voltage f = 1 kHz 25°C 12 12nV/√Hz

VN(PP)

Peak-to-peakequivalent input

f = 0.1 Hz to 1 Hz 25°C 0.8 0.8µVVN(PP) equivalent input

noise voltage f = 0.1 Hz to 10 Hz 25°C 1.3 1.3µV

InEquivalent inputnoise current

25°C 0.6 0.6 fA√Hz

THD + NTotal harmonicdistortion plus

VO = ±2.3 V,RL 50 kΩ

AV = 125°C

0.014% 0.014%THD + N distortion plus

noiseRL = 50 kΩ,f = 20 kHz AV = 10

25°C0.024% 0.024%

Gain-bandwidth f =10 kHz, RL = 50 kΩ,25°C 0 73 0 73 MHz

product,

CL = 100 pFL ,

25°C 0.73 0.73 MHz

BOMMaximum output- VO(PP) = 4.6 V, AV = 1,

25°C 85 85 kHzBOM swing bandwidthO(PP) ,

RL = 50 kΩ,V ,

CL = 100 pF25°C 85 85 kHz

AV = –1, To 0 1% 7 1 7 1t Settling time

AV = 1,Step = –2.3 V to 2.3 V,

To 0.1%25°C

7.1 7.1µsts Settling time ,

RL = 50 kΩ,To 0 01%

25°C16 5 16 5

µsL

CL = 100 pF To 0.01% 16.5 16.5

φmPhase margin atunity gain RL = 50 kΩ, CL = 100 pF

25°C 57° 57°

Gain marginL L

25°C 11 11 dB

† Full range is –40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix.

Page 26: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAILOPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2264Q/M electrical characteristics at specified free-air temperature, VDD = 5 V (unlessotherwise noted)

PARAMETER TEST CONDITIONS TA†TLC2264Q,TLC2264M

TLC2264AQ,TLC2264AM UNITA

MIN TYP MAX MIN TYP MAX

VIO Input offset voltage25°C 300 2500 300 950

µVVIO Input offset voltageFull range 3000 1500

µV

αVIOTemperature coefficientof input offset voltage

Full range 2 2 µV/°C

Input offset voltagelong-term drift (see Note 4)

VDD± = ±2.5 V,VO = 0,

VIC = 0,RS = 50 Ω

25°C 0.003 0.003 µV/mo

IIO Input offset current25°C 0.5 0.5

pAIIO Input offset current125°C 800 800

pA

IIB Input bias current25°C 1 1

pAIIB Input bias current125°C 800 800

pA

VICRCommon-mode input

RS = 50 Ω |VIO| ≤5 mV

25°C0

to 4–0.3

to 4.20

to 4–0.3

to 4.2VVICR voltage range RS = 50 Ω, |VIO| ≤5 mV

Full range0

to 3.50

to 3.5

V

IOH = –20 µA 25°C 4.99 4.99

IOH = 100 µA25°C 4.85 4.94 4.85 4.94

VOH High-level output voltageIOH = –100 µA

Full range 4.82 4.82 V

IOH = 400 µA25°C 4.7 4.85 4.7 4.85

IOH = –400 µAFull range 4.5 4.5

VIC = 2.5 V, IOL = 50 µA 25°C 0.01 0.01

VIC = 2 5 V IOL = 500 µA25°C 0.09 0.15 0.09 0.15

VOL Low-level output voltageVIC = 2.5 V, IOL = 500 µA

Full range 0.15 0.15 V

VIC = 2 5 V IOL = 4 A25°C 0.8 1 0.7 1

VIC = 2.5 V, IOL = 4 AFull range 1.2 1.2

Large signal differential V 2 5 V RL 50 kΩ‡25°C 80 100 80 170

AVDLarge-signal differentialvoltage amplification

VIC = 2.5 V,VO = 1 V to 4 V

RL = 50 kهFull range 50 50 V/mVVD voltage am lification VO = 1 V to 4 V

RL = 1 MΩ‡ 25°C 550 550

ri(d)Differential inputresistance

25°C 1012 1012 Ω

ri(c)Common-mode inputresistance

25°C 1012 1012 Ω

ci(c)Common-mode inputcapacitance

f = 10 kHz, N package 25°C 8 8 pF

zoClosed-loop outputimpedance

f = 100 kHz, AV = 10 25°C 240 240 Ω

CMRRCommon-mode rejection VIC = 0 to 2.7 V, VO = 2.5 V, 25°C 70 83 70 83

dBCMRRj

ratioIC

RS = 50 ΩO

Full range 70 70dB

kSVRSupply-voltage rejectionratio (∆VDD/∆VIO) VDD = 4.4 V to 16 V,

25°C 80 95 80 95 dB

IDDSupply current

VO = 2 5 V No load25°C 0.8 1 0.8 1

mAIDDy

(four amplifiers)VO = 2.5 V, No load

Full range 1 1mA

† Full range is –40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix.‡ Referenced to 2.5 VNOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated

to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Page 27: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAIL

OPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

27POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2264Q/M operating characteristics at specified free-air temperature, VDD = 5 V

PARAMETER TEST CONDITIONS TA†TLC2264Q,TLC2264M

TLC2264AQ,TLC2264AM UNITA

MIN TYP MAX MIN TYP MAX

Slew rate at unity VO = 0 5 V to 3 5 V R 50 kΩ‡25°C 0.35 0.55 0.35 0.55

SRSlew rate at unitygain

VO = 0.5 V to 3.5 V,CL = 100 pF‡

RL = 50 kه,Full

0 25 0 25V/µsgain CL = 100 F‡

range0.25 0.25

VEquivalent input f = 10 Hz 25°C 40 40

nV/√HzVnq

noise voltage f = 1 kHz 25°C 12 12nV/√Hz

VN(PP)

Peak-to-peakequivalent input

f = 0.1 Hz to 1 Hz 25°C 0.7 0.7µVVN(PP) equivalent input

noise voltage f = 0.1 Hz to 10 Hz 25°C 1.3 1.3µV

InEquivalent inputnoise current

25°C 0.6 0.6 fA /√Hz

THD + NTotal harmonicdistortion plus

VO = 0.5 V to 2.5 V,f 20 kHz

AV = 125°C

0.017% 0.017%THD + N distortion plus

noisef = 20 kHz,RL = 50 kه AV = 10

25°C0.03% 0.03%

Gain-bandwidth f = 50 kHz, RL = 50 kΩ‡, 25°C 0 71 0 71 MHzproduct

f 50 kHz,CL = 100 pF‡

RL 50 kΩ , 25°C 0.71 0.71 MHz

BOMMaximum output- VO(PP) = 2 V, AV = 1,

25°C 185 185 kHzBOM swing bandwidthO(PP) ,

RL = 50 kه,V ,

CL = 100 pF‡ 25°C 185 185 kHz

AV = –1, To 0 1% 6 4 6 4t Settling time

AV = 1,Step = 0.5 V to 2.5 V,

To 0.1%25°C

6.4 6.4µsts Settling time ,

RL = 50 kΩ‡,‡ To 0 01%

25°C14 1 14 1

µsL

CL = 100 pF‡ To 0.01% 14.1 14.1

φmPhase margin atunity gain RL = 50 kΩ‡, CL = 100 pF‡

25°C 56° 56°

Gain marginL , L

25°C 11 11 dB

† Full range is –40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix.‡ Referenced to 2.5 V

Page 28: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAILOPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

28 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2264Q/M electrical characteristics at specified free-air temperature, VDD± = ±5 V (unlessotherwise noted)

PARAMETER TEST CONDITIONS TA†TLC2264Q,TLC2264M

TLC2264AQ,TLC2264AM UNITA

MIN TYP MAX MIN TYP MAX

VIO Input offset voltage25°C 300 2500 300 950

µVVIO Input offset voltageFull range 3000 1500

µV

αVIOTemperature coefficient of

Full range 2 2 µV/°CαVIO input offset voltageFull range 2 2 µV/°C

Input offset voltagelong-term drift (see Note 4)

VIC = 0,RS = 50 Ω

VO = 0, 25°C 0.003 0.003 µV/mo

IIO Input offset current25°C 0.5 0.5

pAIIO Input offset current125°C 800 800

pA

IIB Input bias current25°C 1 1

pAIIB Input bias current125°C 800 800

pA

–5 –5 3 –5 –5 325°C

–5to 4

–5.3to 4 2

–5to 4

–5.3to 4 2

VICRCommon-mode input RS = 50 Ω,

25 C to 4 to 4.2 to 4 to 4.2VVICR voltage range

S ,|VIO| ≤5 mV –5 –5

Vvoltage range |VIO| ≤5 mV

Full range–5

to 3 5–5

to 3 5Full range to 3.5 to 3.5

IO = –20 µA 25°C 4.99 4.99

M i iti k IO = 100 µA25°C 4.85 4.94 4.85 4.94

VOM+Maximum positive peakoutput voltage

IO = –100 µAFull range 4.82 4.82 V

out ut voltage

IO = 400 µA25°C 4.7 4.85 4.7 4.85

IO = –400 µAFull range 4.5 4.5

VIC = 0, IO = 50 µA 25°C –4.99 –4.99

M i ti k VIC = 0 IO = 500 µA25°C –4.85 –4.91 –4.85 –4.91

VOM–Maximum negative peakoutput voltage

VIC = 0, IO = 500 µAFull range –4.85 –4.85 V

out ut voltage

VIC = 0 IO = 4 A25°C –4 –4.3 –4 –4.3

VIC = 0, IO = 4 AFull range –3.8 –3.8

L i l diff ti l RL = 50 kΩ25°C 80 200 80 200

AVDLarge-signal differentialvoltage amplification

VO = ±4 VRL = 50 kΩ

Full range 50 50 V/mVvoltage am lification

RL = 1 MΩ 25°C 1000 1000

ri(d) Differential input resistance 25°C 1012 1012 Ω

ri(c)Common-mode inputresistance

25°C 1012 1012 Ω

ci(c)Common-mode inputcapacitance

f = 10 kHz, N package 25°C 8 8 pF

zoClosed-loop outputimpedance

f = 100 kHz, AV = 10 25°C 220 220 Ω

CMRRCommon-mode VIC = –5 V to 2.7 V, 25°C 75 88 75 88

dBCMRRrejection ratio VO = 0, RS = 50 Ω Full range 75 75

dB

kSVRSupply-voltage rejection VDD± = ±2.2 V to ±8 V, 25°C 80 95 80 95

dBkSVRy g j

ratio (∆VDD± /∆VIO) VIC = VDD/2, No load Full range 80 80dB

IDDSupply current

VO = 0 No load25°C 0.85 1 0.85 1

mAIDDy

(four amplifiers) VO = 0, No loadFull range 1 1

mA

† Full range is –40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix.NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated

to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Page 29: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAIL

OPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

29POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC2264Q/M operating characteristics at specified free-air temperature, VDD± = ±5 V

PARAMETER TEST CONDITIONS TA†TLC2264Q,TLC2264M

TLC2264AQ,TLC2264AM UNITA

MIN TYP MAX MIN TYP MAX

Slew rate at unity VO = ±2 V RL = 50 kΩ25°C 0.35 0.55 0.35 0.55

SRSlew rate at unitygain

VO = ±2 V,CL = 100 pF

RL = 50 kΩ,Full

0 25 0 25V/µsgain CL = 100 F

range0.25 0.25

VEquivalent input f = 10 Hz 25°C 43 43

nV/√HzVnq

noise voltage f = 1 kHz 25°C 12 12nV/√Hz

VN(PP)

Peak-to-peakequivalent input

f = 0.1 Hz to 1 Hz 25°C 0.8 0.8µVVN(PP) equivalent input

noise voltage f = 0.1 Hz to 10 Hz 25°C 1.3 1.3µV

InEquivalent inputnoise current

25°C 0.6 0.6 fA /√Hz

THD + NTotal harmonicdistortion plus

VO = ±2.3 V,RL 50 kΩ

AV = 125°C

0.014% 0.014%THD + N distortion plus

noiseRL = 50 kΩ,f = 20 kHz AV = 10

25°C0.024% 0.024%

Gain-bandwidth f =10 kHz, RL = 50 kΩ,25°C 0 73 0 73 MHz

product,

CL = 100 pFL ,

25°C 0.73 0.73 MHz

BOMMaximum output- VO(PP) = 4.6 V, AV = 1,

25°C 70 70 kHzBOM swing bandwidthO(PP) ,

RL = 50 kΩ,V ,

CL = 100 pF25°C 70 70 kHz

AV = –1, To 0 1% 7 1 7 1t Settling time

AV = 1,Step = –2.3 V to 2.3 V,

To 0.1%25°C

7.1 7.1µsts Settling time ,

RL = 50 kΩ,To 0 01%

25°C16 5 16 5

µsL

CL = 100 pF To 0.01% 16.5 16.5

φmPhase margin atunity gain RL = 50 kΩ, CL = 100 pF

25°C 57° 57°

Gain marginL L

25°C 11 11 dB

† Full range is –40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix.

Page 30: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAILOPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

30 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Table of GraphsFIGURE

VIO Input offset voltageDistributionvs Common-mode input voltage

2 – 56, 7

αVIO Input offset voltage temperature coefficient Distribution 8 – 11

IIB/IIO Input bias and input offset currents vs Free-air temperature 12

VI Input voltage rangevs Supply voltagevs Free-air temperature

1314

VOH High-level output voltage vs High-level output current 15

VOL Low-level output voltage vs Low-level output current 16, 17

VOM+ Maximum positive output voltage vs Output current 18

VOM– Maximum negative output voltage vs Output current 19

VO(PP) Maximum peak-to-peak output voltage vs Frequency 20

IOS Short-circuit output currentvs Supply voltagevs Free-air temperature

2122

VO Output voltage vs Differential input voltage 23, 24

Differential gain vs Load resistance 25

AVD Large-signal differential voltage amplificationvs Frequencyvs Free-air temperature

26, 2728, 29

zo Output impedance vs Frequency 30, 31

CMRR Common-mode rejection ratiovs Frequencyvs Free-air temperature

3233

kSVR Supply-voltage rejection ratiovs Frequencyvs Free-air temperature

34, 3536

IDD Supply currentvs Supply voltagevs Free-air temperature

37, 3839, 40

SR Slew ratevs Load capacitancevs Free-air temperature

4142

Inverting large-signal pulse response 43, 44

VOVoltage-follower large-signal pulse response 45, 46

VOInverting small-signal pulse response 47, 48

Voltage-follower small-signal pulse response 49, 50

Vn Equivalent input noise voltage vs Frequency 51, 52

Noise voltage (referred to input) Over a 10-second period 53

Integrated noise voltage vs Frequency 54

THD + N Total harmonic distortion plus noise vs Frequency 55

Gain-bandwidth productvs Supply voltagevs Free-air temperature

5657

φm Phase marginvs Frequencyvs Load capacitance

26, 2758

Gain margin vs Load capacitance 59

B1 Unity-gain bandwidth vs Load capacitance 60

Overestimation of phase margin vs Load capacitance 61

Page 31: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAIL

OPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

31POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 2

Pre

cen

tag

e o

f Am

plif

iers

– %

DISTRIBUTION OF TLC2262INPUT OFFSET VOLTAGE

VIO – Input Offset Voltage – mV

15

10

5

0

20

25

–1.6 –0.8 0 0.8 1.6

VDD± = ± 2.5 VTA = 25°C

1274 Amplifiers From 2 Wafer Lots

Figure 3

Per

cen

tag

e o

f Am

plif

iers

– %

DISTRIBUTION OF TLC2262INPUT OFFSET VOLTAGE

VIO – Input Offset Voltage – mV

15

10

5

0

20

25

–1.6 –0.8 0 0.8 1.6

VDD± = ± 5 VTA = 25°C

1274 Amplifiers From 2 Wafer Lots

Figure 4

12

8

4

0

Per

cen

tag

e o

f Am

plif

iers

– %

16

DISTRIBUTION OF TLC2264INPUT OFFSET VOLTAGE

20

–1.6 –0.8 0 0.8 1.6VIO – Input Offset Voltage – mV

2272 Amplifiers From 2 Wafer LotsVDD± = ±2.5 VTA = 25°C

Figure 5

12

8

4

0

Per

cen

tag

e o

f Am

plif

iers

– %

16

DISTRIBUTION OF TLC2264INPUT OFFSET VOLTAGE

20

–1.6 –0.8 0 0.8 1.6

2272 Amplifiers From 2 Wafer LotsVDD± = ±5 VTA = 25°C

VIO – Input Offset Voltage – mV

Page 32: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAILOPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

32 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 6

0

VIO

– In

pu

t O

ffse

t V

olt

age

– m

V

0.5

INPUT OFFSET VOLTAGEvs

COMMON-MODE INPUT VOLTAGE1

–0.5

–1–1 0 1 2 3 4 5

ÁÁÁÁÁÁV

IO

VIC – Common-Mode Input Voltage – V

VDD = 5 VRS = 50 ΩTA = 25°C

† For curves where VDD = 5 V, all loads are referenced to 2.5 V.

Figure 7

0

VIO

– In

pu

t O

ffse

t V

olt

age

– m

V

0.5

INPUT OFFSET VOLTAGEvs

COMMON-MODE INPUT VOLTAGE1

–0.5

–1–6 –5 –4 –3 –2 –1 0 1 2 3 4 5

ÁÁÁÁÁÁ

VIO

VIC – Common-Mode Input Voltage – V

VDD± = ±5 VRS = 50 ΩTA = 25°C

15

10

5

0

Per

cen

tag

e o

f Am

plif

iers

– %

20

25

DISTRIBUTION OF TLC2262 INPUT OFFSETVOLTAGE TEMPERATURE COEFFICIENT†

30

–5 –4 –3 –2 –1 0 1 2 3 4 5

128 Amplifiers From 2 Wafer LotsVDD± = ± 2.5 VP PackageTA = 25°C to 125°C

αVIO – Temperature Coefficient – µV/ °C

Figure 8

15

10

5

0

Per

cen

tag

e o

f Am

plif

iers

– %

20

25

DISTRIBUTION OF TLC2262 INPUT OFFSETVOLTAGE TEMPERATURE COEFFICIENT†

30

–5 –4 –3 –2 –1 0 1 2 3 4 5αVIO – Temperature Coefficient – µV/ °C

128 Amplifiers From 2 Wafer LotsVDD± = ± 5 VP PackageTA = 25°C to 125°C

Figure 9

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Page 33: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAIL

OPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

33POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 10

Per

cen

tag

e o

f Am

plif

iers

– %

DISTRIBUTION OF TLC2264 INPUT OFFSETVOLTAGE TEMPERATURE COEFFICIENT†

αVIO – Temperature Coefficient ofInput Offset Voltage – µV/ °C

10

5

30

0

20

15

25

35

–5 –4 –3 –2 –1 0 1 2 3 4 5

128 Amplifiers From2 Wafer LotsVDD± = ± 2.5 VN PackageTA = 25°C to 125°C

Per

cen

tag

e o

f Am

plif

iers

– %

DISTRIBUTION OF TLC2264 INPUT OFFSETVOLTAGE TEMPERATURE COEFFICIENT†

αVIO – Temperature Coefficient ofInput Offset Voltage – µV/ °C

10

5

30

0

20

15

25

35

–5 –4 –3 –2 –1 0 1 2 3 4 5

128 Amplifiers From2 Wafer LotsVDD± = ± 5 VN PackageTA = 25°Cto 125°C

Figure 11

0

50

100

150

200

250

300

350

400

450

25 45 65 85 105 125

Figure 12

IIB a

nd

IIO

– In

pu

t B

ias

and

Inp

ut

Off

set

Cu

rren

ts –

pA

INPUT BIAS AND INPUT OFFSET CURRENTS†

vsFREE-AIR TEMPERATURE

IIB

IIO

VDD± = ±2.5 VVIC = 0 VVO = 0RS = 50 Ω

TA – Free-Air Temperature – °C

ÁÁÁÁI I

BI IO

Figure 13

0

2 3 4 5

VI –

Inp

ut

Vo

ltag

e R

ang

e –

V

4

8

INPUT VOLTAGE RANGEvs

SUPPLY VOLTAGE10

6 7 8

6

2

–2

–4

–6

–8

–10

| VIO | ≤ 5 mV

RS = 50 ΩTA = 25°C

VI

| VDD± | – Supply Voltage – V

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Page 34: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAILOPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

34 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 14

5

2

1

0

VI –

Inp

ut

Vo

ltag

e R

ang

e –

V

3

4

INPUT VOLTAGE RANGE†‡

vsFREE-AIR TEMPERATURE

5

–1–75 –55 –35 –15 25 45 65 85 105 125

| VIO | ≤5 mV

VDD = 5 V

ÁÁÁÁ

VI

TA – Free-Air Temperature – °C

Figure 15

VO

H –

Hig

h-L

evel

Ou

tpu

t V

olt

age

– V

HIGH-LEVEL OUTPUT VOLTAGE†‡

vsHIGH-LEVEL OUTPUT CURRENT

| IOH| – High-Level Output Current – µA

ÁÁÁÁ

V OH

3

2

1

00 500 1000

4

5

6

1500 2000 3000 35002500

VDD = 5 V

TA = 125°C

TA = 25°C

TA = –55°C

TA = –40°C

Figure 16

0.6

0.4

0.2

00 1 2 3

VO

L –

Lo

w-L

evel

Ou

tpu

t V

olt

age

– V

0.8

1

LOW-LEVEL OUTPUT VOLTAGE‡

vsLOW-LEVEL OUTPUT CURRENT

1.2

4 5

VIC = 0VIC = 1.25 V

VIC = 2.5 V

VDD = 5 VTA = 25°C

ÁÁÁÁÁÁ

V OL

IOL – Low-Level Output Current – mA

Figure 17

0.8

0.4

0.2

00 1 2 3

VO

L –

Lo

w-L

evel

Ou

tpu

t V

olt

age

– V

1

1.2

LOW-LEVEL OUTPUT VOLTAGE†‡

vsLOW-LEVEL OUTPUT CURRENT

1.4

4 5 6

0.6

IOL – Low-Level Output Current – mA

TA = 125°C

TA = 25°C

TA = –55°C

VDD = 5 VVIC = 2.5 V

ÁÁÁÁV

OL

TA = –40°C

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.‡ For curves where VDD = 5 V, all loads are referenced to 2.5 V.

Page 35: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAIL

OPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

35POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 18

VO

M +

– M

axim

um

Po

siti

ve O

utp

ut

Vo

ltag

e –

V

MAXIMUM POSITIVE OUTPUT VOLTAGE†

vsOUTPUT CURRENT

ÁÁÁÁÁÁV

OM

+

| IO | – Output Current – µA

3

2

1

00 500 1000

4

5

6

1500 2000 3000 35002500

VDD± = ±5 V

TA = 125°C

TA = 25°C

TA = –55°C

TA = –40°C

Figure 19

0 1 2V

OM

– –

Max

imu

m N

egat

ive

Ou

tpu

t V

olt

age

– V

MAXIMUM NEGATIVE OUTPUT VOLTAGE†

vsOUTPUT CURRENT

3 4 5 6

–3.8

–4

–4.2

–4.4

–4.6

–4.8

–5

VDD± = ±5 VVIC = 0

TA = 125°C

TA = 25°C

TA = –55°C

IO – Output Current – mA

ÁÁÁÁÁÁÁÁ

VO

M –

TA = –40°C

6

5

3

1

0

10

4

VO

(PP

) –

Max

imu

m P

eak-

to-P

eak

Ou

tpu

t V

olt

age

– V

8

7

9

f – Frequency – Hz

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE†‡

vsFREQUENCY

2

ÁÁÁÁÁÁ

VO

(PP

)

103 104 105 106

VDD = 5 V

VDD± = ±5 VRL = 10 kΩTA = 25°C

‡ For curves where VDD = 5 V, all loads are referenced to 2.5 V.

Figure 20 Figure 21

IOS

– S

ho

rt-C

ircu

it O

utp

ut

Cu

rren

t –

mA

SHORT-CIRCUIT OUTPUT CURRENTvs

SUPPLY VOLTAGE

I OS

| VDD± | – Supply Voltage – V2 3 4 5 6 7 8

12

10

8

6

4

2

0

–2

–4

VID = –100 mV

VO = 0TA = 25°C

VID = 100 mV

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Page 36: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAILOPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

36 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 22

IOS

– S

ho

rt-C

ircu

it O

utp

ut

Cu

rren

t –

mA

SHORT-CIRCUIT OUTPUT CURRENT†

vsFREE-AIR TEMPERATURE

TA – Free-Air Temperature – °C

I OS

–75

13

12

11

10

9

8

7

1

0

–1

–2

–3

–4–50 –25 0 25 50 75 100 125

VO = 0VDD± = ±5 V

VID = –100 mV

VID = 100 mV

Figure 23

3

2

1

00 250

4

5

OUTPUT VOLTAGE‡

vsDIFFERENTIAL INPUT VOLTAGE

500 750 1000

VID – Differential Input Voltage – µV

– O

utp

ut

Vo

ltag

e –

VV

O

–1000 –750 –250–500

VDD = 5 VRL = 50 kΩVIC = 2.5 VTA = 25°C

Figure 24

1

–1

–3

–50 250

3

5

OUTPUT VOLTAGEvs

DIFFERENTIAL INPUT VOLTAGE

500 750 1000

VID – Differential Input Voltage – µV

VDD± = ±5 VVIC = 0 VRL = 50 kΩTA = 25°C

– O

utp

ut

Vo

ltag

e –

VV

O

–1000 –750 –250–5001

10Dif

fere

nti

al G

ain

– V

/ mV

DIFFERENTIAL GAIN‡

vsLOAD RESISTANCE

RL – Load Resistance – kΩ

102

103

104

VO(PP) = 2 VTA = 25°C

VDD = 5 V

103 104 105 106

VDD± = ±5 V

Figure 25

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.‡ For curves where VDD = 5 V, all loads are referenced to 2.5 V.

Page 37: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAIL

OPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

37POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

om

– P

has

e M

arg

in

φ m

20

f – Frequency – Hz

80

60

40

0

–20

–40103 104 105 106 107

180°

135°

90°

45°

–45°

–90°

LARGE-SIGNAL DIFFERENTIAL VOLTAGE†

AMPLIFICATION AND PHASE MARGINvs

FREQUENCY

AV

D –

Lar

ge-

Sig

nal

Dif

fere

nti

al

ÁÁÁÁÁÁ

AV

D Vo

ltag

e A

mp

lific

atio

n –

dB

† For curves where VDD = 5 V, all loads are referenced to 2.5 V.

Gain

Phase Margin

VDD = 5 VCL= 100 pFTA = 25°C

Figure 26

om

– P

has

e M

arg

in

φ m

20

f – Frequency – Hz

LARGE-SIGNAL DIFFERENTIAL VOLTAGEAMPLIFICATION AND PHASE MARGIN

vsFREQUENCY

80

60

40

0

–20

–40103 104 105 106 107

180°

135°

90°

45°

–45°

–90°

AV

D –

Lar

ge-

Sig

nal

Dif

fere

nti

al

ÁÁÁÁÁÁ

AV

D Vo

ltag

e A

mp

lific

atio

n –

dB

Gain

Phase Margin

VDD± = ±5 VCL = 100 pFTA = 25°C

Figure 27

Page 38: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAILOPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

38 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

LARGE-SIGNAL DIFFERENTIALVOLTAGE AMPLIFICATION†‡

vsFREE-AIR TEMPERATURE

–75 –50 –25 0 25 50 75 100 125TA – Free-Air Temperature – °C

AV

D –

Lar

ge-

Sig

nal

Dif

fere

nti

al

ÁÁÁÁ

AV

D Vo

ltag

e A

mp

lific

atio

n –

V/m

V

VDD = 5 VVIC = 2.5 VVO = 1 V to 4 V

RL = 50 kΩ

RL = 1 MΩ

RL = 10 kΩ

104

103

102

101

Figure 28 Figure 29

–75 –50 –25 0 25 50 75 100 125TA – Free-Air Temperature – °C

LARGE-SIGNAL DIFFERENTIALVOLTAGE AMPLIFICATION†

vsFREE-AIR TEMPERATURE

AV

D –

Lar

ge-

Sig

nal

Dif

fere

nti

alÁÁÁÁ

AV

D Vo

ltag

e A

mp

lific

atio

n –

V/m

V

VDD± = ±5 VVIC = 0 VVO = ±4 V

RL = 1 MΩ

RL = 50 kΩ

RL = 10 kΩ

104

103

102

101

10

1

0.1

1000

100

zo –

Ou

tpu

t Im

ped

ance

– 0

OUTPUT IMPEDANCE‡

vsFREQUENCY

f – Frequency – Hz102 103 104 105 106

Ωz o

VDD = 5 VTA = 25°C

AV = 100

AV = 10

AV = 1

Figure 30

10

1

0.1

1000

100

OUTPUT IMPEDANCEvs

FREQUENCY

f – Frequency – Hz102 103 104 105 106

VDD± = ±5 VTA = 25°C

AV = 100

AV = 10

AV = 1

zo –

Ou

tpu

t Im

ped

ance

– 0 Ω

z o

Figure 31

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.‡ For curves where VDD = 5 V, all loads are referenced to 2.5 V.

Page 39: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAIL

OPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

39POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 32

60

40

20

0

80

f – Frequency – Hz

COMMON-MODE REJECTION RATIO†

vsFREQUENCY

100

101 102 103 104 105 106

VDD± = ±5 V

VDD = 5 V

CM

RR

– C

om

mo

n-M

od

e R

ejec

tio

n R

atio

– d

B

Figure 33

86

84

82

80

88

COMMON-MODE REJECTION RATIO†‡

vsFREE-AIR TEMPERATURE

90

–75 –50 –25 0 25 50 75 100

VDD± = ±5 V

VDD = 5 V

TA – Free-Air Temperature – °C

CM

RR

– C

om

mo

n-M

od

e R

ejec

tio

n R

atio

– d

B125

f – Frequency – Hz

SUPPLY-VOLTAGE REJECTION RATIO†

vsFREQUENCY

100

80

60

40

20

0

–20101 102 103 104 105 106

kSVR+

kSVR–

VDD = 5 VTA = 25°C

KS

VR

– S

up

ply

-Vo

ltag

e R

ejec

tio

n R

atio

– d

B

ÁÁÁÁÁÁ

kS

VR

Figure 34

KS

VR

– S

up

ply

-Vo

ltag

e R

ejec

tio

n R

atio

– d

B

f – Frequency – Hz

SUPPLY-VOLTAGE REJECTION RATIOvs

FREQUENCY100

80

60

40

20

0

–20101 102 103 104 105 106

ÁÁÁÁÁÁ

kS

VR

kSVR+

kSVR–

VDD± = ±5 VTA = 25°C

Figure 35

‡ Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

† For curves where VDD = 5 V, all loads are referenced to 2.5 V.

Page 40: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAILOPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

40 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 36

100

95

90

KS

VR

– S

up

ply

-Vo

ltag

e R

ejec

tio

n R

atio

– d

B

105

SUPPLY-VOLTAGE REJECTION RATIO†

vsFREE-AIR TEMPERATURE

110

–50 –25 0 25 50 75 100 125

ÁÁÁÁÁÁ

kS

VR

TA – Free-Air Temperature – °C

VO = 0VDD± = ±2.2 V to ±8 V

–75

Figure 37

300

200

100

00 1 2 3 4 5

IDD

– S

up

ply

Cu

rren

t –

uA

400

500

600

6 7 8

| VDD± | – Supply Voltage – V

TA = 25°CTA = 125°C

TA = –55°C

VO = 0 No Load

ÁÁÁÁI

DD

TA = 40°C

TLC2262SUPPLY CURRENT†

vsSUPPLY VOLTAGE

Figure 38

600

400

200

00 1 2 3 4 5

IDD

– S

up

ply

Cu

rren

t –

uA

800

1000

1200

6 7 8

| VDD± | – Supply Voltage – V

TA = 25°CTA = 125°C

TA = –55°C

VO = 0 No Load

ÁÁÁÁÁÁ

I DD

TA = 40°C

TLC2264SUPPLY CURRENT†

vsSUPPLY VOLTAGE

Figure 39

300

200

100

0

400

500

600

–75 –50 –25 0 25 50 75 100

IDD

– S

up

ply

Cu

rren

t –

uA

ÁÁÁÁÁÁ

I DD

TA – Free-Air Temperature – °C

VDD± = ±5 VVO = 0

VDD = 5 VVO = 2.5 V

125

TLC2262SUPPLY CURRENT†‡

vsFREE-AIR TEMPERATURE

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.‡ For curves where VDD = 5 V, all loads are referenced to 2.5 V.

Page 41: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAIL

OPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

41POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 40

600

400

200

0

800

1000

1200

–50 –25 0 25 50 75 100 125

IDD

– S

up

ply

Cu

rren

t –

uA

ÁÁÁÁ

I DD

TA – Free-Air Temperature – °C

VDD± = ±5 VVO = 0

VDD = 5 VVO = 2.5 V

–75

TLC2264SUPPLY CURRENT†‡

vsFREE-AIR TEMPERATURE

0.8

0.4

0.2

0

1

0.6

SR

– S

lew

Rat

e –

v/u

s

SLEW RATE‡

vsLOAD CAPACITANCE

V/

CL – Load Capacitance – pF101 102 103 104

SR+

VDD = 5 VAV = –1TA = 25°C

SR–

Figure 41

Figure 42

0.6

0.4

0.2

0

0.8

1

SLEW RATE†‡

vsFREE-AIR TEMPERATURE

1.2

–75 –50 –25 0 25 50 75 100TA – Free-Air Temperature – °C

VDD = 5 VRL = 50 kΩCL = 100 pFAV = 1

SR

– S

lew

Rat

e –

v/u

ssµV

/

125

SR+

SR–

Figure 43

2

1

00 2 4 6 8 10 12

VO

– O

utp

ut

Vo

ltag

e –

V

3

4

INVERTING LARGE-SIGNAL PULSERESPONSE‡

5

14 16 18 20

VO

VDD = 5 VRL = 50 kΩCL = 100 pFAV = –1TA = 25°C

t – Time – µs

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.‡ For curves where VDD = 5 V, all loads are referenced to 2.5 V.

Page 42: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAILOPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

42 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 44

0

4

0 2 4 6 8 10 12

2

1

3

5

14 16 18 20

VDD± = ±5 VRL = 50 kΩCL = 100 pFAV = –1TA = 25°C

t – Time – µs

VO

– O

utp

ut

Vo

ltag

e –

VV

O

–1

–2

–3

–4

–5

INVERTING LARGE-SIGNAL PULSERESPONSE

Figure 45

2

1

00 2 4 6 8 10 12

3

4

VOLTAGE-FOLLOWER LARGE-SIGNALPULSE RESPONSE†

5

14 16 18 20

VDD = 5 VRL = 50 kΩCL = 100 pFAV = 1TA = 25°C

t – Time – µs

VO

– O

utp

ut

Vo

ltag

e –

VV

O

0

4

0 2 4 6 8 10 12

2

1

3

5

14 16 18 20

VDD± = ±5 VRL = 50 kΩCL = 100 pFAV = 1TA = 25°C

t – Time – µs

VO

– O

utp

ut

Vo

ltag

e –

VV

O

–1

–2

–3

–4

–5

VOLTAGE-FOLLOWER LARGE-SIGNALPULSE RESPONSE

Figure 46 Figure 47

2.5

2.45

2.40 2 4 6 8 10 12

2.55

2.6

INVERTING SMALL-SIGNALPULSE RESPONSE†

2.65

14 16 18 20

VDD = 5 VRL = 50 kΩCL = 100 pFAV = –1TA = 25°C

VO

– O

utp

ut

Vo

ltag

e –

VV

O

t – Time – µs

† For curves where VDD = 5 V, all loads are referenced to 2.5 V.

Page 43: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAIL

OPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

43POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 48

0

0 2 4 6 8 10 12

INVERTING SMALL-SIGNALPULSE RESPONSE

100

14 16 18 20

50

–50

–100

VDD± = ±5 VRL = 50 kΩCL = 100 pFAV = –1TA = 25°C

t – Time – µs

VO

– O

utp

ut

Vo

ltag

e –

mV

VO

Figure 49

2.5

2.45

2.4

0 2 4 6 8 10 12

2.55

2.6

VOLTAGE-FOLLOWER SMALL-SIGNALPULSE RESPONSE†

2.65

14 16 18 20

VDD = 5 VRL = 50 kΩCL = 100 pFAV = 1TA = 25°C

VO

– O

utp

ut

Vo

ltag

e –

VV

Ot – Time – µs

Figure 50

0 2 4 6 8 10 12

VOLTAGE-FOLLOWER SMALL-SIGNALPULSE RESPONSE

14 16 18 20

VDD± = ±5 VRL = 50 kΩCL = 100 pFAV = 1TA = 25°C

VO

– O

utp

ut

Vo

ltag

e –

VV

O

t – Time – µs

–100

–50

0

50

100

40

20

10

0

60

30

VN

– E

qu

ival

ent

Inp

ut

No

ise

Vo

ltag

e –

nv/

/Hz

50

f – Frequency – Hz

EQUIVALENT INPUT NOISE VOLTAGE†

vsFREQUENCY

101 102 103 104

nV

/H

zV

n

VDD = 5 VRS = 20 ΩTA = 25°C

Figure 51

† For curves where VDD = 5 V, all loads are referenced to 2.5 V.

Page 44: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAILOPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

44 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

40

20

10

0

60

30

50

101 102 103 104

EQUIVALENT INPUT NOISE VOLTAGEvs

FREQUENCY

f – Frequency – Hz

VN

– E

qu

ival

ent

Inp

ut

No

ise

Vo

ltag

e –

nv/

/Hz

nV

/H

zV

n

VDD± = ±5 VRS = 20 ΩTA = 25°C

Figure 52

0 2 4 6

No

ise

Vo

ltag

e –

nV

0

750

t – Time – s

EQUIVALENT INPUT NOISE VOLTAGE OVERA 10-SECOND PERIOD†

1000

8 10

500

–250

–500

–750

–1000

250

VDD = 5 Vf = 0.1 Hz to 10 HzTA = 25°C

Figure 53

0.1

Inte

gra

ted

No

ise

Vo

ltag

e –

f – Frequency – Hz

INTEGRATED NOISE VOLTAGEvs

FREQUENCY

1

10

100

100 101 102 103 104 105

Calculated Using Ideal Pass-Band FilterLow Frequency = 1 HzTA = 25°CV

µ

Figure 54

0.01

0.1

TH

D +

N –

To

tal H

arm

on

ic D

isto

rtio

n P

lus

No

ise

– %

f – Frequency – Hz

TOTAL HARMONIC DISTORTION PLUS NOISE†

vsFREQUENCY

0.001101 102 103 104 105

AV = 100

AV = 10

AV = 1

VDD = 5 VRL = 50 kΩTA = 25°C

Figure 55

† For curves where VDD = 5 V, all loads are referenced to 2.5 V.

Page 45: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAIL

OPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

45POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 56

Gai

n-B

and

wid

th P

rod

uct

– k

Hz

GAIN-BANDWIDTH PRODUCTvs

SUPPLY VOLTAGE

| VDD ± | – Supply Voltage – V

860

820

780

7400 2 3 5

900

940

7 81 4 6

f = 10 kHzRL = 50 kΩCL = 100 pFTA = 25°C

Figure 57

Gai

n-B

and

wid

th P

rod

uct

– k

Hz

GAIN-BANDWIDTH PRODUCT†‡

vsFREE-AIR TEMPERATURE

TA – Free-Air Temperature – °C

800

600

400

1000

1200

–75 –25 0 25 50 75 100 125

VDD = 5 Vf = 10 kHzCL = 100 pF

–50

Figure 58

om

– P

has

e M

arg

in

PHASE MARGINvs

LOAD CAPACITANCE

101 102 103 104

CL – Load Capacitance – pF

75°

60°

45°

30°

15°

Rnull = 50 Ω

Rnull = 100 Ω

Rnull = 0Rnull = 10 Ω

TA = 25°C

50 kΩ

50 kΩ

VDD –

VDD +Rnull

CLVI

+–

Rnull = 20 Ω

20

10

5

0

15

Gai

n M

arg

in –

dB

GAIN MARGINvs

LOAD CAPACITANCE

101 102 103 104

CL – Load Capacitance – pF

Rnull = 20 Ω

Rnull = 0

Rnull = 100 Ω

TA = 25°C

Rnull = 50 Ω

Rnull = 10 Ω

Figure 59

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.‡ For curves where VDD = 5 V, all loads are referenced to 2.5 V.

Page 46: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

† See application information

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAILOPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

46 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

600

400

200

– U

nit

y-G

ain

Ban

dw

idth

– k

Hz

800

UNITY-GAIN BANDWIDTH†

vsLOAD CAPACITANCE

1000

101 102 103 104

CL – Load Capacitance – pF

ÁÁÁÁB

1

TA = 25°C

Figure 60

Ove

rest

imat

ion

of P

has

e M

arg

in

OVERESTIMATION OF PHASE MARGIN†

vsLOAD CAPACITANCE

14°

12°

10°

0

101 102 103 104

CL – Load Capacitance – pF

Rnull = 100 Ω

Rnull = 50 Ω

Rnull = 10 Ω

TA = 25°C

Rnull = 20 Ω

Figure 61

Page 47: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAIL

OPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

47POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

APPLICATION INFORMATION

driving large capacitive loads

The TLC226x is designed to drive larger capacitive loads than most CMOS operational amplifiers. Figure 58and Figure 59 illustrate its ability to drive loads greater than 400 pF while maintaining good gain and phasemargins (Rnull = 0).

A smaller series resistor (Rnull) at the output of the device (see Figure 62) improves the gain and phase marginswhen driving large capacitive loads. Figure 58 and Figure 59 show the effects of adding series resistances of10 Ω, 20 Ω, 50 Ω, and 100 Ω. The addition of this series resistor has two effects: the first is that it adds a zeroto the transfer function and the second is that it reduces the frequency of the pole associated with the outputload in the transfer function.

The zero introduced to the transfer function is equal to the series resistance times the load capacitance. Tocalculate the improvement in phase margin, equation 1 can be used.

∆Θm1 tan–1 2 × π × UGBW × Rnull × CL

Where :

(1)

∆Θm1 improvement inphasemargin

UGBW unity-gainbandwidthfrequency

Rnull output seriesresistance

CL loadcapacitance

The unity-gain bandwidth (UGBW) frequency decreases as the capacitive load increases (see Figure 60). Touse equation 1, UGBW must be approximated from Figure 60.

Using equation 1 alone overestimates the improvement in phase margin, as illustrated in Figure 61. Theoverestimation is caused by the decrease in the frequency of the pole associated with the load, thus providingadditional phase shift and reducing the overall improvement in phase margin. The pole associated with the loadis reduced by the factor calculated in equation 2.

F 11 gm × Rnull

Where :

(2)

F factor reducingfrequencyof pole

gm small-signaloutput transconductance (typically 4.83 × 10–3 mhos)

Rnull output series resistance

For the TLC226x, the pole associated with the load is typically 7 MHz with 100-pF load capacitance. This valuevaries inversely with CL: at CL = 10 pF, use 70 MHz, at CL = 1000 pF, use 700 kHz, and so on.

Reducing the pole associated with the load introduces phase shift, thereby reducing phase margin. This resultsin an error in the increase in phase margin expected by considering the zero alone (equation 1). Equation 3approximates the reduction in phase margin due to the movement of the pole associated with the load. Theresult of this equation can be subtracted from the result of the equation in equation 1 to better approximate theimprovement in phase margin.

Page 48: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAILOPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

48 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

APPLICATION INFORMATION

driving large capacitive loads (continued)

∆Θm2 tan–1UGBWF×P2

– tan–1 UGBWP2

Where :

(3)

∆Θm2 reduction in phase margin

UGBW unity-gain bandwidth frequency

F factor from equation 2

P2 unadjusted pole (70 MHz@10 pF, 7 MHz@100 pF, etc.)

Using these equations with Figure 60 and Figure 61 enables the designer to choose the appropriate outputseries resistance to optimize the design of circuits driving large capacitive loads.

50 kΩ

50 kΩ

VDD– /GND

VDD+

Rnull

CL

VI+

Figure 62. Series-Resistance Circuit

Page 49: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TLC226x, TLC226xAAdvanced LinCMOS RAIL-TO-RAIL

OPERATIONAL AMPLIFIERSSLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

49POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

APPLICATION INFORMATION

macromodel information

Macromodel information provided was derived using Microsim Parts , the model generation software usedwith Microsim PSpice . The Boyle macromodel (see Note 5) and subcircuit in Figure 63 are generated usingthe TLC226x typical electrical and operating characteristics at TA = 25°C. Using this information, outputsimulations of the following key parameters can be generated to a tolerance of 20% (in most cases):

Maximum positive output voltage swing Maximum negative output voltage swing Slew rate Quiescent power dissipation Input bias current Open-loop voltage amplification

Unity-gain frequency Common-mode rejection ratio Phase margin DC output resistance AC output resistance Short-circuit output current limit

NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers,” IEEE Journalof Solid-State Circuits, SC-9, 353 (1974).

OUT

+

+

+

+

+–

+

+

– +

+–

.SUBCKT TLC226x 1 2 3 4 5C1 11 12 3.560E–12C2 6 7 15.00E–12DC 5 53 DXDE 54 5 DXDLP 90 91 DXDLN 92 90 DXDP 4 3 DXEGND 99 0 POLY (2) (3,0) (4,0) 0 .5 .5FB 7 99 POLY (5) VB VC VE VLP+ VLN 0 21.04E6 –30E6 30E6 30E6 –30E6GA 6 0 11 12 47.12E–6GCM 0 6 10 99 4.9E–9ISS 3 10 DC 8.250E–6HLIM 90 0 VLIM 1KJ1 11 2 10 JXJ2 12 1 10 JXR2 6 9 100.0E3

RD1 60 11 21.22E3RD2 60 12 21.22E3R01 8 5 120R02 7 99 120RP 3 4 26.04E3RSS 10 99 24.24E6VAD 60 4 –.6VB 9 0 DC 0VC 3 53 DC .65VE 54 4 DC .65VLIM 7 8 DC 0VLP 91 0 DC 1.4VLN 0 92 DC 9.4.MODEL DX D (IS=800.0E–18).MODEL JX PJF (IS=500.0E–15 BETA=281E–6+ VTO=–.065).ENDS

VCC+

RP

IN –2

IN+1

VCC–

VAD

RD1

11

J1 J2

10

RSS ISS

3

12

RD2

60

VE

54DE

DP

VC

DC

4

C1

53

R2

6

9

EGND

VB

FB

C2

GCM GA VLIM

8

5

RO1

RO2

HLIM

90

DLP

91

DLN

92

VLNVLP

99

7

Figure 63. Boyle Macromodel and Subcircuit

PSpice and Parts are trademarks of MicroSim Corporation.

Page 50: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

PACKAGE OPTION ADDENDUM

www.ti.com 15-Apr-2017

Addendum-Page 1

PACKAGING INFORMATION

Orderable Device Status(1)

Package Type PackageDrawing

Pins PackageQty

Eco Plan(2)

Lead/Ball Finish(6)

MSL Peak Temp(3)

Op Temp (°C) Device Marking(4/5)

Samples

5962-9469201QHA ACTIVE CFP U 10 1 TBD A42 N / A for Pkg Type -55 to 125 9469201QHATLC2262M

5962-9469203QPA ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type -55 to 125 9469203QPATLC2262AM

5962-9469204Q2A ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 5962-9469204Q2ATLC2264AMFKB

5962-9469204QCA ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type -55 to 125 5962-9469204QCATLC2264AMJB

TLC2262AID ACTIVE SOIC D 8 75 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM -40 to 125 2262AI

TLC2262AIDG4 ACTIVE SOIC D 8 75 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM -40 to 125 2262AI

TLC2262AIDR ACTIVE SOIC D 8 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM -40 to 125 2262AI

TLC2262AIDRG4 ACTIVE SOIC D 8 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM -40 to 125 2262AI

TLC2262AIP ACTIVE PDIP P 8 50 Pb-Free(RoHS)

CU NIPDAU N / A for Pkg Type -40 to 125 TLC2262AI

TLC2262AIPE4 ACTIVE PDIP P 8 50 Pb-Free(RoHS)

CU NIPDAU N / A for Pkg Type -40 to 125 TLC2262AI

TLC2262AIPW ACTIVE TSSOP PW 8 150 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM -40 to 125 Y2262A

TLC2262AIPWG4 ACTIVE TSSOP PW 8 150 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM -40 to 125 Y2262A

TLC2262AIPWR ACTIVE TSSOP PW 8 2000 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM -40 to 125 Y2262A

TLC2262AIPWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM -40 to 125 Y2262A

TLC2262AMJG ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type -55 to 125 TLC2262AMJG

TLC2262AMJGB ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type -55 to 125 9469203QPATLC2262AM

Page 51: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

PACKAGE OPTION ADDENDUM

www.ti.com 15-Apr-2017

Addendum-Page 2

Orderable Device Status(1)

Package Type PackageDrawing

Pins PackageQty

Eco Plan(2)

Lead/Ball Finish(6)

MSL Peak Temp(3)

Op Temp (°C) Device Marking(4/5)

Samples

TLC2262AQD ACTIVE SOIC D 8 75 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM -40 to 125 C2262A

TLC2262CD ACTIVE SOIC D 8 75 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM 0 to 70 2262C

TLC2262CDG4 ACTIVE SOIC D 8 75 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM 0 to 70 2262C

TLC2262CDR ACTIVE SOIC D 8 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM 0 to 70 2262C

TLC2262CDRG4 ACTIVE SOIC D 8 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM 0 to 70 2262C

TLC2262CP ACTIVE PDIP P 8 50 Pb-Free(RoHS)

CU NIPDAU N / A for Pkg Type 0 to 70 TLC2262CP

TLC2262CPE4 ACTIVE PDIP P 8 50 Pb-Free(RoHS)

CU NIPDAU N / A for Pkg Type 0 to 70 TLC2262CP

TLC2262CPW ACTIVE TSSOP PW 8 150 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM 0 to 70 P2262

TLC2262CPWG4 ACTIVE TSSOP PW 8 150 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM 0 to 70 P2262

TLC2262CPWR ACTIVE TSSOP PW 8 2000 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM 0 to 70 P2262

TLC2262CPWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM 0 to 70 P2262

TLC2262ID ACTIVE SOIC D 8 75 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM 2262I

TLC2262IDG4 ACTIVE SOIC D 8 75 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM 2262I

TLC2262IDR ACTIVE SOIC D 8 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM 2262I

TLC2262IDRG4 ACTIVE SOIC D 8 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM 2262I

TLC2262IP ACTIVE PDIP P 8 50 Pb-Free(RoHS)

CU NIPDAU N / A for Pkg Type TLC2262IP

TLC2262MUB ACTIVE CFP U 10 1 TBD A42 N / A for Pkg Type -55 to 125 9469201QHATLC2262M

TLC2262QD ACTIVE SOIC D 8 75 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM -40 to 125 C2262Q

Page 52: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

PACKAGE OPTION ADDENDUM

www.ti.com 15-Apr-2017

Addendum-Page 3

Orderable Device Status(1)

Package Type PackageDrawing

Pins PackageQty

Eco Plan(2)

Lead/Ball Finish(6)

MSL Peak Temp(3)

Op Temp (°C) Device Marking(4/5)

Samples

TLC2262QDR ACTIVE SOIC D 8 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM -40 to 125 C2262Q

TLC2262QDRG4 ACTIVE SOIC D 8 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM C2262Q

TLC2264AID ACTIVE SOIC D 14 50 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM -40 to 125 2264AI

TLC2264AIDG4 ACTIVE SOIC D 14 50 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM -40 to 125 2264AI

TLC2264AIDR ACTIVE SOIC D 14 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM -40 to 125 2264AI

TLC2264AIDRG4 ACTIVE SOIC D 14 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM -40 to 125 2264AI

TLC2264AIN ACTIVE PDIP N 14 25 Pb-Free(RoHS)

CU NIPDAU N / A for Pkg Type -40 to 125 TLC2264AIN

TLC2264AINE4 ACTIVE PDIP N 14 25 Pb-Free(RoHS)

CU NIPDAU N / A for Pkg Type -40 to 125 TLC2264AIN

TLC2264AIPW ACTIVE TSSOP PW 14 90 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM -40 to 125 Y2264A

TLC2264AIPWG4 ACTIVE TSSOP PW 14 90 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM -40 to 125 Y2264A

TLC2264AIPWR ACTIVE TSSOP PW 14 2000 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM -40 to 125 Y2264A

TLC2264AIPWRG4 ACTIVE TSSOP PW 14 2000 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM -40 to 125 Y2264A

TLC2264AMFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 5962-9469204Q2ATLC2264AMFKB

TLC2264AMJ ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type -55 to 125 TLC2264AMJ

TLC2264AMJB ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type -55 to 125 5962-9469204QCATLC2264AMJB

TLC2264AQD ACTIVE SOIC D 14 50 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM -40 to 125 2264AQ

TLC2264AQDRG4 ACTIVE SOIC D 14 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM PJ2264A

Page 53: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

PACKAGE OPTION ADDENDUM

www.ti.com 15-Apr-2017

Addendum-Page 4

Orderable Device Status(1)

Package Type PackageDrawing

Pins PackageQty

Eco Plan(2)

Lead/Ball Finish(6)

MSL Peak Temp(3)

Op Temp (°C) Device Marking(4/5)

Samples

TLC2264CD ACTIVE SOIC D 14 50 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM 0 to 70 TLC2264C

TLC2264CDG4 ACTIVE SOIC D 14 50 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM 0 to 70 TLC2264C

TLC2264CDR ACTIVE SOIC D 14 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM 0 to 70 TLC2264C

TLC2264CN ACTIVE PDIP N 14 25 Pb-Free(RoHS)

CU NIPDAU N / A for Pkg Type 0 to 70 TLC2264CN

TLC2264CNE4 ACTIVE PDIP N 14 25 Pb-Free(RoHS)

CU NIPDAU N / A for Pkg Type 0 to 70 TLC2264CN

TLC2264CPW ACTIVE TSSOP PW 14 90 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM 0 to 70 P2264

TLC2264CPWG4 ACTIVE TSSOP PW 14 90 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM 0 to 70 P2264

TLC2264CPWR ACTIVE TSSOP PW 14 2000 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM 0 to 70 P2264

TLC2264CPWRG4 ACTIVE TSSOP PW 14 2000 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM 0 to 70 P2264

TLC2264ID ACTIVE SOIC D 14 50 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM TLC2264I

TLC2264IDG4 ACTIVE SOIC D 14 50 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM TLC2264I

TLC2264IDR ACTIVE SOIC D 14 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM TLC2264I

TLC2264IN ACTIVE PDIP N 14 25 Pb-Free(RoHS)

CU NIPDAU N / A for Pkg Type TLC2264IN

TLC2264INE4 ACTIVE PDIP N 14 25 Pb-Free(RoHS)

CU NIPDAU N / A for Pkg Type TLC2264IN

(1) The marketing status values are defined as follows:ACTIVE: Product device recommended for new designs.LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.PREVIEW: Device has been announced but is not in production. Samples may or may not be available.OBSOLETE: TI has discontinued the production of the device.

Page 54: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

PACKAGE OPTION ADDENDUM

www.ti.com 15-Apr-2017

Addendum-Page 5

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availabilityinformation and additional product content details.TBD: The Pb-Free/Green conversion plan has not been defined.Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement thatlead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used betweenthe die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weightin homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuationof the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finishvalue exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on informationprovided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken andcontinues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TLC2262, TLC2262A, TLC2262AM, TLC2262M, TLC2264A, TLC2264AM :

• Catalog: TLC2262A, TLC2262, TLC2264A

• Automotive: TLC2264A-Q1, TLC2264A-Q1

• Military: TLC2262M, TLC2262AM, TLC2264AM

NOTE: Qualified Version Definitions:

• Catalog - TI's standard catalog product

Page 55: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

PACKAGE OPTION ADDENDUM

www.ti.com 15-Apr-2017

Addendum-Page 6

• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

• Military - QML certified for Military and Defense Applications

Page 56: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device PackageType

PackageDrawing

Pins SPQ ReelDiameter

(mm)

ReelWidth

W1 (mm)

A0(mm)

B0(mm)

K0(mm)

P1(mm)

W(mm)

Pin1Quadrant

TLC2262AIDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1

TLC2262AIPWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1

TLC2262CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1

TLC2262CPWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1

TLC2262IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1

TLC2262QDR SOIC D 8 2500 330.0 12.5 6.4 5.2 2.1 8.0 12.0 Q1

TLC2264AIDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1

TLC2264AIPWR TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1

TLC2264CDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1

TLC2264CPWR TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1

TLC2264IDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 18-Oct-2016

Pack Materials-Page 1

Page 57: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

*All dimensions are nominal

Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)

TLC2262AIDR SOIC D 8 2500 340.5 338.1 20.6

TLC2262AIPWR TSSOP PW 8 2000 367.0 367.0 35.0

TLC2262CDR SOIC D 8 2500 340.5 338.1 20.6

TLC2262CPWR TSSOP PW 8 2000 367.0 367.0 35.0

TLC2262IDR SOIC D 8 2500 340.5 338.1 20.6

TLC2262QDR SOIC D 8 2500 340.5 338.1 20.6

TLC2264AIDR SOIC D 14 2500 333.2 345.9 28.6

TLC2264AIPWR TSSOP PW 14 2000 367.0 367.0 35.0

TLC2264CDR SOIC D 14 2500 333.2 345.9 28.6

TLC2264CPWR TSSOP PW 14 2000 367.0 367.0 35.0

TLC2264IDR SOIC D 14 2500 333.2 345.9 28.6

PACKAGE MATERIALS INFORMATION

www.ti.com 18-Oct-2016

Pack Materials-Page 2

Page 58: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303
Page 59: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303
Page 60: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

www.ti.com

PACKAGE OUTLINE

C

14X .008-.014 [0.2-0.36]TYP

-150

AT GAGE PLANE

-.314.308-7.977.83[ ]

14X -.026.014-0.660.36[ ]14X -.065.045

-1.651.15[ ]

.2 MAX TYP[5.08]

.13 MIN TYP[3.3]

TYP-.060.015-1.520.38[ ]

4X .005 MIN[0.13]

12X .100[2.54]

.015 GAGE PLANE[0.38]

A

-.785.754-19.9419.15[ ]

B -.283.245-7.196.22[ ]

CDIP - 5.08 mm max heightJ0014ACERAMIC DUAL IN LINE PACKAGE

4214771/A 05/2017

NOTES: 1. All controlling linear dimensions are in inches. Dimensions in brackets are in millimeters. Any dimension in brackets or parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.2. This drawing is subject to change without notice. 3. This package is hermitically sealed with a ceramic lid using glass frit.4. Index point is provided on cap for terminal identification only and on press ceramic glass frit seal only.5. Falls within MIL-STD-1835 and GDIP1-T14.

7 8

141

PIN 1 ID(OPTIONAL)

SCALE 0.900

SEATING PLANE

.010 [0.25] C A B

Page 61: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

www.ti.com

EXAMPLE BOARD LAYOUT

ALL AROUND[0.05]

MAX.002

.002 MAX[0.05]ALL AROUND

SOLDER MASKOPENING

METAL

(.063)[1.6]

(R.002 ) TYP[0.05]

14X ( .039)[1]

( .063)[1.6]

12X (.100 )[2.54]

(.300 ) TYP[7.62]

CDIP - 5.08 mm max heightJ0014ACERAMIC DUAL IN LINE PACKAGE

4214771/A 05/2017

LAND PATTERN EXAMPLENON-SOLDER MASK DEFINED

SCALE: 5X

SEE DETAIL A SEE DETAIL B

SYMM

SYMM

1

7 8

14

DETAIL ASCALE: 15X

SOLDER MASKOPENING

METAL

DETAIL B13X, SCALE: 15X

Page 62: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303
Page 63: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303
Page 64: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303
Page 65: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303
Page 66: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303
Page 67: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

MECHANICAL DATA

MCER001A – JANUARY 1995 – REVISED JANUARY 1997

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE

0.310 (7,87)0.290 (7,37)

0.014 (0,36)0.008 (0,20)

Seating Plane

4040107/C 08/96

5

40.065 (1,65)0.045 (1,14)

8

1

0.020 (0,51) MIN

0.400 (10,16)0.355 (9,00)

0.015 (0,38)0.023 (0,58)

0.063 (1,60)0.015 (0,38)

0.200 (5,08) MAX

0.130 (3,30) MIN

0.245 (6,22)0.280 (7,11)

0.100 (2,54)

0°–15°

NOTES: A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.C. This package can be hermetically sealed with a ceramic lid using glass frit.D. Index point is provided on cap for terminal identification.E. Falls within MIL STD 1835 GDIP1-T8

Page 68: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303
Page 69: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303
Page 70: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

www.ti.com

PACKAGE OUTLINE

C

TYP6.66.2

1.2 MAX

6X 0.65

8X 0.300.19

2X1.95

0.150.05

(0.15) TYP

0 - 8

0.25GAGE PLANE

0.750.50

A

NOTE 3

3.12.9

BNOTE 4

4.54.3

4221848/A 02/2015

TSSOP - 1.2 mm max heightPW0008ASMALL OUTLINE PACKAGE

NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.5. Reference JEDEC registration MO-153, variation AA.

18

0.1 C A B

54

PIN 1 IDAREA

SEATING PLANE

0.1 C

SEE DETAIL A

DETAIL ATYPICAL

SCALE 2.800

Page 71: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

www.ti.com

EXAMPLE BOARD LAYOUT

(5.8)

0.05 MAXALL AROUND

0.05 MINALL AROUND

8X (1.5)8X (0.45)

6X (0.65)

(R )TYP

0.05

4221848/A 02/2015

TSSOP - 1.2 mm max heightPW0008ASMALL OUTLINE PACKAGE

SYMM

SYMM

LAND PATTERN EXAMPLESCALE:10X

1

45

8

NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

METALSOLDER MASKOPENING

NON SOLDER MASKDEFINED

SOLDER MASK DETAILSNOT TO SCALE

SOLDER MASKOPENING

METAL UNDERSOLDER MASK

SOLDER MASKDEFINED

Page 72: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

www.ti.com

EXAMPLE STENCIL DESIGN

(5.8)

6X (0.65)

8X (0.45)8X (1.5)

(R ) TYP0.05

4221848/A 02/2015

TSSOP - 1.2 mm max heightPW0008ASMALL OUTLINE PACKAGE

NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design.

SYMM

SYMM

1

45

8

SOLDER PASTE EXAMPLEBASED ON 0.125 mm THICK STENCIL

SCALE:10X

Page 73: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303
Page 74: TLC226x, TLC226xA Advanced LinCMOS RAIL-TO … TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 POST OFFICE BOX 655303

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to itssemiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyersshould obtain the latest relevant information before placing orders and should verify that such information is current and complete.TI’s published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integratedcircuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products andservices.Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and isaccompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduceddocumentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statementsdifferent from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for theassociated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designersremain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers havefull and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI productsused in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, withrespect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerousconsequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm andtake appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer willthoroughly test such applications and the functionality of such TI products as used in such applications.TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information,including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended toassist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in anyway, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resourcesolely for this purpose and subject to the terms of this Notice.TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TIproducts, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specificallydescribed in the published documentation for a particular TI Resource.Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications thatinclude the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISETO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTYRIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, orother intellectual property right relating to any combination, machine, or process in which TI products or services are used. Informationregarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty orendorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of thethird party, or a license from TI under the patents or other intellectual property of TI.TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES ORREPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TOACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OFMERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUALPROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM,INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OFPRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL,DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES INCONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEENADVISED OF THE POSSIBILITY OF SUCH DAMAGES.Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, suchproducts are intended to help enable customers to design and create their own applications that meet applicable functional safety standardsand requirements. Using products in an application does not by itself establish any safety features in the application. Designers mustensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products inlife-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use.Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., lifesupport, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, allmedical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product).Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applicationsand that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatoryrequirements in connection with such selection.Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-compliance with the terms and provisions of this Notice.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265Copyright © 2017, Texas Instruments Incorporated