universiti putra malaysia isolation, optimization and ...psasir.upm.edu.my/id/eprint/66866/1/fs 2016...

67
UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND RECOVERY OF ASTAXANTHIN FROM SHRIMP SHELL WASTES OF LOCALLY ISOLATED AEROMONAS HYDROPHILA (STEINER) CHEONG JEE YIN FS 2016 60

Upload: others

Post on 31-Aug-2019

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

UNIVERSITI PUTRA MALAYSIA

ISOLATION, OPTIMIZATION AND RECOVERY OF ASTAXANTHIN FROM SHRIMP SHELL WASTES OF LOCALLY ISOLATED AEROMONAS

HYDROPHILA (STEINER)

CHEONG JEE YIN

FS 2016 60

Page 2: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

ISOLATION, OPTIMIZATION AND RECOVERY OF ASTAXANTHIN FROM

SHRIMP SHELL WASTES OF LOCALLY ISOLATED Aeromonas hydrophila

(Steiner)

By

CHEONG JEE YIN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in

Fulfilment of the Requirements for the Degree of Doctor of Philosophy

September 2016

Page 3: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

All material contained within the thesis, including without limitation text, logos, icons,

photographs and all other artwork, is copyright material of Universiti Putra Malaysia

unless otherwise stated. Use may be made of any material contained within the thesis

for non-commercial purposes from the copyright holder. Commercial use of any

material may only be made with the express, prior, written permission of Universiti

Putra Malaysia.

Copyright © Universiti Putra Malaysia

Page 4: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

i

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of

the requirement for the degree of Doctor of Philosophy

ISOLATION, OPTIMIZATION AND RECOVERY OF ASTAXANTHIN FROM

SHRIMP SHELL WASTES OF LOCALLY-ISOLATED Aeromonas hydrophila

(Steiner)

By

CHEONG JEE YIN

September 2016

Chairman : Muskhazli Mustafa, PhD

Faculty : Science

Astaxanthin is a red pigment naturally produced by microalgae. Being part of the

shrimp diet, this pigment was accumulated in their body, shells and eggs. The total

amount of shell wastes discarded during processing could reach up to 40-50% of its

body weight. Previously, astaxanthin was recovered from shrimp shells using lactic

acid bacteria fermentation. This method promises a good return but has higher

maintenance. Meanwhile aerobic bacteria fermentation has less maintenance and was

less explored in this context. Astaxanthin in its free form is readily oxidised while

astaxanthin in crustaceans appears to be in complexes (carotenoprotein,

carotenolipoprotein and chitinocarotenoids) which is less prone to oxidation. The

current aim was to recover astaxanthin from shrimp shell wastes through aerobic

bacteria fermentation. In order to obtain astaxanthin from shrimp wastes, chitinase and

protease were crucial to dechitinize and deproteinize the pigment from its stable

complex structures. In this study, the first objective was to isolate potential shrimp shell

degrading bacteria from shrimp shells. Bacteria were isolated from shrimp shells and

screened using shrimp crab shell powder. A total of 19 isolates producing chitinase and

protease were obtained. Potential isolates were then compared among each other using

shrimp shell waste powder (SSWP) to seek for an optimum enzyme (chitianse and

protease) producing isolate. The selected isolate was identified as Aeromonas

hydrophila. Naturally, shrimp shells are calcified and may hinder further recovery of

astaxanthin. Hence, the addition of cell disruptions was aimed to loosen the complex

structure of shrimp shells. A dual effect “shell disruption” method was adopted where

non-chemical shell disruption was applied on the wastes as pre-treatment followed by

microbial enzyme disruption as the second. The amount of astaxanthin recorded after

the application of shell disruptions was comparable between treatments of control (non-

pretreated SSWP fermented with microbial enzyme) and autolysis (pre-treated SSWP

with autolysis and microbial enzyme). The control treatment has resulted in 2.3 ±

0.1179µg/ml of astaxanthin recovery, while combined autolysis treatment and

microbial enzyme yielded 2.11 ± 0.0961µg/ml. Since both treatments gave similar yield

and were not significantly different, single shell disruption (control treatment) was

sufficient to produce a good recovery. In order to enhance enzyme production and

astaxanthin recovery, the culture media and conditions were also optimized.

Optimization of the culture media and conditions was carried out using Response

Surface Methodology analysis (RSM). The media was screened with various media

Page 5: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

ii

supplements (nitrogen, inorganic salts and carbon sources) and concentrations (1, 3, 5,

7, 9% w/v) before optimizing with RSM. An optimum media containing 3% MSG, 1%

glucose, pH 7.0 and 30 °C with a constant supply of 0.1% K2HPO4, 0.05%

MgSO4.7H2O, and 9% SSWP was used to culture A. hydrophila. In comparison, by

using the optimum culture astaxanthin recovery, chitinase and protease activity has

increase up to 38.4%, 30% and 36% respectively as compared to un-optimized media.

To achieve the main goal of this investigation, carotenoids were purified with thin layer

chromatography (TLC) and the presence of astaxanthin was confirmed using high

pressure liquid chromatography (HPLC). Carotenoids were obtained after bacteria

fermentation on SSWP under optimized conditions and were soxhlet extracted with

acetone and concentrated before subjecting to TLC. The best mobile phase in

separating the pigments was hexane: acetone (3:1 v/v). The potential band for

astaxanthin was obtained from TLC at Rf value of 0.33. This band was re-extracted in

acetone and subjected to confirmation using HPLC with a reference standard. The

presence of astaxanthin was confirmed at retention time of 15.5, 16.4, 17.4, and 18.3

minutes. In conclusion, astaxanthin can be recovered from shrimp shell waste with

aerobic fermentation of A. hydrophila.

Page 6: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

iii

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai

memenuhi keperluan untuk ijazah Doktor Falsafah

PENGASINGAN, PENGOPTIMUMAN DAN PEMEROLEHAN SEMULA

ASTAXANTHIN DARIPADA SISA KULIT UDANG OLEH ISOLAT-

TEMPATAN Aeromonas hydrophila (Steiner)

Oleh

CHEONG JEE YIN

September 2016

Pengerusi : Muskhazli Mustafa, PhD

Fakulti : Sains

Astaxanthin adalah pigmen merah semulajadi yang dihasilkan oleh mikroalga. Sebagai

sebahagian daripada diet udang, pigmen ini sering terkumpul di dalam badan, kulit dan

telur. Jumlah kulit udang yang dibuang semasa pemprosesan boleh mencecah sehingga

40-50% daripada beratnya. Sebelum ini, pemulihan semula astaxanthin daripada kulit

udang adalah secara penapaian dengan bakteria asid laktik. Kaedah ini menjanjikan

hasil yang lumayan, tetapi mempunyai kos penyelenggaraannya tinggi. Sementara itu,

penapaian bakteria secara aerobik yang kurang penyelenggaraan kurang diterokai.

Astaxanthin dalam struktur bebas adalah lebih cenderung untuk dioksidakan manakala

astaxanthin yang wujud dalam krustacea merupakan astaxanthin dalam struktur

kompleks (karotenoprotein, karotenolipoprotein dan khitinokarotenoid) yang kurang

cenderung pada pengoksidaan. Tujuan utama penyelidikan ini adalah untuk

menulenkan astaxanthin daripada sisa kulit udang melalui cara penapaian bakteria

aerobic. Dalam usaha untuk mendapatkan astaxanthin daripada sisa udang, kitinase dan

protease adalah penting proses pembebasan khitin dan protein daripada struktur pigmen

yang stabil dan kompleks. Dalam kajian ini, objektif pertama adalah untuk

mengasingkan bakteria yang berpotensi untuk degradasi sisa kulit udang daripada kulit

udang. Bakteria yang berjaya diasingkan daripada kulit udang disaring menggunakan

serbuk kulit ketam. Sebanyak 19 isolat yang menghasilkan kitinase dan protease telah

diperolehi. Isolat yang berpotensi dibandingkan antara satu sama lain dengan

menggunakan serbuk sisa kulit udang (SSWP) bagi mendapatkan isolat yang paling

optimum dalam penghasilan enzim (kitinase dan protease). Isolat yang terpilih telah

dikenal pasti sebagai Aeromonas hydrophila. Secara semulajadi, kulit udang

mengalami proses kalsifikasi yang menyukarkan bagi mendapatkan lebih astaxanthin.

Oleh itu, penambahan kaedah gangguan sel bertujuan untuk melonggarkan struktur

kompleks kulit udang. Kaedah Dwi kesan ‘ganguan kulit’ digunakan dimana

‘gangguan kulit’ tanpa bahan kimia dikenakan pada sisa-sisa sebagai pra-rawatan dan

diikuti oleh gangguan enzim mikrob dijadikan fasa kedua. Jumlah astaxanthin

direkodkan selepas gangguan kulit adalah setanding antara rawatan kawalan (tiada pra-

rawatan penapaian SSWP dengan enzim mikrob) dan autolisis (pra-rawatan SSWP

dengan autolisis dan enzim mikrob). Rawatan kawalan telah memberikan perolehan

astaxanthin sebanyak 2.3 ± 0.1179μg/ml manakala gabungan rawatan autolisis dan

enzim mikrob menghasilkan 2.11 ± 0.0961μg/ml. Oleh kerana, kedua-dua rawatan

memberikan hasil statiistik yang tidak signifikasi, gangguan secara tunggal (rawatan

Page 7: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

iv

kawalan) adalah memadai untuk menghasilkan perolehan yang baik. Dalam usaha

untuk meningkatkan pengeluaran enzim dan pemulihan astaxanthin , media kultur dan

keadaan telah dioptimumkan. Pengoptimuman kultur media dan penyediaan bakteria

telah dilaksanakan dengan menggunakan analisis kaedah response surface (RSM).

Kultur media telah disaring dengan pelbagai jenis bahan tambahan (sumber nitrogen,

garam inorganic dan karbon) dan kepekatan (1, 3, 5, 7, 9% w/v) sebelum dioptimisasi

dengan RSM. Media optima yang mengandungi 3% MSG, 1% glukosa, pH 7,0 dan 30

° C dengan bekalan malar 0.1% K2HPO4 , 0.05% MgSO4.7H2O , dan 9% SSWP untuk

kultur A. hydrophila. Sebagai perbandingan, penggunaan kultur media optima telah

masing-masing memberikan pemulihan astaxanthin, peningkatan aktiviti enzim kitinase

dan protease sebanyak 38.4%, 30% dan 36% berbanding media tidak optima. Bagi

mencapai objektif utama dalam kajian ini, karotenoid telah ditulenkan dengan

menggunakan kaedah kromatografi lapis tipis (TLC) dan kehadiran astaxanthin

disahkan dengan menggunakan kromatografi cecair tekanan tinggi (HPLC). Karotenoid

yang diperolehi selepas penapaian dengan bakteria dalam media optimum diekstrak

dengan aseton menggunakan kaedah soxhlet dan dipekatkan sebelum digunakan dalam

TLC. Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik untuk

pemisahan pigmen. Kehadiran astaxanthin dapat telah ditunjukkan oleh jalur yang

terbentuk dari TLC pada nilai Rf 0.33 . Jalur ini kemudiannya diekstrak semula dengan

aseton dan digunakan untuk pengesahan astaxanthin menggunakan HPLC dengan

perbandingan kepada bahan rujukan piawaian. Astaxanthin disahkan kehadirannya

pada sela masa minit ke 15.5, 16.4, 17.4 dan 18.3. Kesimpulannya, astaxanthin dapat

diperolehi semula daripada sisa kulit udang melalui penapaian aerobik dengan A.

hydrophila.

Page 8: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

v

ACKNOWLEDGEMENTS

My greatest gratitude goes out to my supervisor Assoc. Prof. Dr. Muskhazli Mustafa,

for his never ending support, trust, guidance and understanding in completing this

project. To both of my co-supervisors Assoc. Prof. Dr. Nor Azwady Abd Aziz and Dr.

Siti Aqlima Ahmad, thank you for the support and guidance provided throughout the

project. This thesis would not been produced without your wise guidance, knowledge

and support.

For their generous assistance in this research, I would like to express my gratitude to

my lab mates and seniors, Noormasshela, Nurul Shaziera, Nithyaa Perumal, Safiya

Yakubu, Salihu, Teng Suk Kuan and Chew Weiyun. A special thanks to my lab

assistants, Mrs. Azleen and Mrs. Farah for their assistance in chemicals and

instruments for use.

I would also like to extend my gratitude to those who have supported me during my

conversion and all the way towards the completion of this thesis especially Dr.

Christina Yong, Dr. Amal, Dr. Hishamuddin Omar, Dr. Syaizwan, Prof. Dr. Rusea, Dr.

Alvin Hee, Dr. Abdul Rahim and all the lecturers in the Department of Biology. To Dr.

Issam, Dr. Shuukri and Dr.Yunus; thank you for the extra knowledge in spectroscopy

and protein purification.

To my family, thank you for your love, patience and believe. To my friends, thank you

for the joyful and happy times together and encouragements within the past 4 years.

Finally I would like to express my gratefulness to the Laboratory of Plant Systematic

and Microbe, Department of Biology and Faculty of Science, UPM for a wonderful

time and an opportunity to gain knowledge. A special thanks to the head of department,

all the staff in this department, friends and to my laboratory suppliers for providing me

all the needs.

Page 9: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

vi

I certify that a Thesis Examination Committee has met on 6 September 2016 to conduct

the final examination of Cheong Jee Yin on her thesis entitled “Isolation, Optimization

and Recovery of Astaxanthin from Shrimp Shell Wastes of Locally-Isolated

Aeromonas hydrophila (Steiner)” in accordance with the Universities and University

Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106]

15 March 1998. The Committee recommends that the student be awarded the Doctor of

Philosophy.

Members of the Thesis Examination Committee were as follows:

Rusea Go, PhD

Professor

Faculty of Science

Universiti Putra Malaysia

(Chairman)

Hishamuddin bin Omar, PhD

Senior Lecturer

Faculty of Science

Universiti Putra Malaysia

(Internal Examiner)

Shuhaimi bin Mustafa, PhD

Professor

Halal Products Research Institute

Universiti Putra Malaysia

(Internal Examiner)

Jasim Ahmed, PhD

Senior Lecturer

Kuwait Institute for Scientific Research

Kuwait

(External Examiner)

NOR AINI AB. SHUKOR, PhD

Professor and Deputy Dean

School of Graduate Studies

Universiti Putra Malaysia

Date: 3 November 2016

Page 10: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

vii

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been

accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The

members of the Supervisory Committee were as follows:

Muskhazli Mustafa, PhD

Associate Professor

Faculty of Science

Universiti Putra Malaysia

(Chairman)

Nor Azwady Abd Aziz, PhD

Associate Professor

Faculty of Science

Universiti Putra Malaysia

(Member)

Siti Aqlima Ahmad, PhD

Senior Lecturer

Faculty of Biotechnology and Biomolecular Sciences

Universiti Putra Malaysia

(Member)

BUJANG KIM HUAT, PhD

Professor and Dean

School of Graduate Studies

Universiti Putra Malaysia

Date:

Page 11: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

viii

Declaration by graduate student

I hereby confirm that:

this thesis is my original work;

quotations, illustrations and citations have been duly referenced;

this thesis has not been submitted previously or concurrently for any other degree

at any other institutions;

intellectual property from the thesis and copyright of thesis are fully-owned by

Universiti Putra Malaysia, as according to the Universiti Putra Malaysia

(Research) Rules 2012;

written permission must be obtained from supervisor and the office of Deputy

Vice-Chancellor (Research and Innovation) before thesis is published (in the form

of written, printed or in electronic form) including books, journals, modules,

proceedings, popular writings, seminar papers, manuscripts, posters, reports,

lecture notes, learning modules or any other materials as stated in the Universiti

Putra Malaysia (Research) Rules 2012;

there is no plagiarism or data falsification/fabrication in the thesis, and scholarly

integrity is upheld as according to the Universiti Putra Malaysia (Graduate

Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia

(Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: Date:

Name and Matric No.: Cheong Jee Yin (GS 30313)

Page 12: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

ix

Declaration by Members of Supervisory Committee

This is to confirm that:

the research conducted and the writing of this thesis was under our supervision;

supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate

Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:

Name of

Chairman of

Supervisory

Committee:

Assoc. Prof. Dr. Muskhazli Mustafa

Signature:

Name of Member

of Supervisory

Committee:

Assoc. Prof. Dr. Nor Azwady Abd Aziz

Signature:

Name of Member

of Supervisory

Committee:

Dr. Siti Aqlima Ahmad

Page 13: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

x

TABLE OF CONTENTS

Page

ABSTRACT i

ABSTRAK iii

ACKNOWLEDGEMENTS v

APPROVAL vi

DECLARATION vii

LIST OF TABLES xiii

LIST OF FIGURES xiv

LIST OF APPENDICES xvi

LIST OF ABBREVIATIONS xvii

CHAPTER

1 INTRODUCTION 1

2 LITERATURE REVIEW

2.1 Astaxanthin 5

2.1.1 Structures of astaxanthin 5

2.1.2 Abundance of astaxanthin 6

2.1.3 Uses of Astaxanthin 8

2.1.4 Extraction of astaxanthin 9

2.2 Microbial enzyme hydrolysis of crustacean wastes 10

2.3 The genus Aeromonas 11

2.3.1 Aeromonas hydrophila 12

2.3.2 Secretions of the genus Aeromonas 13

2.3.2.1 Amylase 13

2.3.2.2 Lipase 14

2.3.2.3 β-lactamase 14

2.3.2.4 Protease 15

2.3.2.5 Chitinase 15

2.3.3 Pathogenicity and virulence of Aeromonads 15

2.3.4 Resistance of Aeromonas towards antibiotics 16

2.4 Crustacean wastes and its valuable substances 17

2.4.1 Chitin and chitosan 18

2.4.2 Economy of valuables 19

2.4.3 Managing with chemical treatments 20

2.5 Cell Disruptions 21

2.5.1 Chemical cell disruptions 21

2.5.2 Physical cell disruptions 21

2.5.2.1 Mechanical cell disruptions 21

2.5.2.2 Non mechanical cell disruptions 21

2.5.3 Enzymatic cell disruptions 22

2.6 Response surface methodology 22

Page 14: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

xi

3 AEROMONAS HYDROPHILA AS A SUITABLE

CHITINASE AND PROTEASE PRODUCING BACTERIA

ISOLATED FROM SHRIMP SHELL WASTES

3.1 Introduction 24

3.2 Materials and Methods 25

3.2.1 Preparation of shrimp shell wastes 26

3.2.2 Preparation of colloidal chitin 27

3.2.3 Isolation of bacteria 27

3.2.4 Comparison of possible bacteria isolates 27

3.2.5 Enzyme assays 28

3.2.6 Morphology of the isolated bacteria 28

3.2.7 Molecular 16s RNA sequencing 29

3.2.8 Data analysis 29

3.3 Results and Discussions 29

3.3.1 Isolations of bacteria and enzyme evaluations 30

3.3.2 Comparison of selected isolates in shrimp shell

wastes utilization

31

3.3.3 Identification of the selected bacteria 34

3.4 Conclusion 38

4 THE APPLICATION OF DUAL EFFECT “SHELL

DISRUPTIONS” ON ENHANCING ASTAXANTHIN

RECOVERY FROM SHRIMP SHELL WASTE

4.1 Introduction 39

4.2 Materials and Methods 41

4.2.1 Preparation of shrimp shells 42

4.2.2 Dual effect shell disruption 42

4.2.2.1 Physical shell disruptions as pre-

treatment to shrimp shell wastes

42

4.2.2.2 Microbial enzymatic shell disruption 42

4.2.3 Analysis of astaxanthin 43

4.2.4 Enzyme analysis 43

4.3 Results and Discussions 43

4.3.1 Effects of cell disruptions on astaxanthin

availability

44

4.3.2 Availability of astaxanthin through enzymatic cell

disruption

46

4.4 Conclusion 50

5 ENHANCEMENT OF AEROMONAS HYDROPHILA

ENZYME PRODUCTION, GROWTH AND

ASTAXANTHIN RECOVERY BY OPTIMIZATION OF

THE CULTURE MEDIA

5.1 Introduction 51

5.2 Materials and Methods 53

5.2.1 Screening of sources with SFO technique 54

5.2.2 Screening for temperature and pH 55

5.2.3 Colony Forming Units 55

5.2.4 Experimental Design 56

5.3 Results and Discussions 56

5.3.1 Selection of physio-chemical conditions 57

Page 15: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

xii

5.3.1.1 Nitrogen sources 57

5.3.1.2 Inorganic salts 61

5.3.1.3 Carbon sources 63

5.3.1.4 Temperature 66

5.3.1.5 pH 68

5.3.3 Optimization of the culture media and conditions 69

5.3.3.1 Enzyme activity 71

5.3.3.2 Astaxanthin yield 78

5.3.4 Validation of the model 82

5.4 Conclusion 84

6 CONFIRMATION OF ASTAXANTHIN EXTRACTED

FROM SHRIMP SHELL WASTES AFTER MICROBIAL

FERMENTATION

6.1 Introduction 85

6.2 Materials and Methods 86

6.2.1 Preparation of carotenoids 88

6.2.2 Extraction of carotenoids 88

6.2.3 Purification of carotenoids by thin layer

chromatography (TLC)

88

6.2.4 HPLC confirmation of the presence of astaxanthin 89

6.3 Results and Discussions 90

6.3.1 Separation of carotenoids extract 90

6.3.2 Confirmation of astaxanthin presence 94

6.4 Conclusion 99

7 GENERAL DISCUSSION AND FUTURE

RECOMENDATIONS

100

REFERENCES 108

APPENDICES 145

BIODATA OF STUDENT 163

LISTS OF PUBLICATIONS 164

Page 16: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

xiii

LISTS OF TABLES

Table Page

3.1 Top 10 BLAST results of gene sequenced by S 010 taken from the

gene bank

35

4.1 Availability of astaxanthin from SSW when treated with

mechanical cell disruptions

44

4.2 Astaxanthin availability after fermentation with A. hydrophila on

PTSW

47

5.1 Independent variables and their coded values 56

5.2 Astaxanthin recovery after incubation and growth of A. hydrophila

in various temperatures

67

5.3 Enzyme activities, astaxanthin yield and growth of A. hydrophila

in different pHs

68

5.4 Experimental design and the results of CCD for the enzyme

production and astaxanthin yield from the fermentation with A.

hydrophila

70

5.5 Regression analysis of protease and chitinase from the CCD

response surface model

71

5.6 Analysis of variance (ANOVA) for protease activity 72

5.7 Analysis of variance (ANOVA) for chitinase activity 75

5.8 Regression analysis of astaxanthin yield from the CCD response

surface model

78

5.9 Analysis of variance (ANOVA) for astaxanthin yield 79

5.10 Predicted responses value by CCD and actual experimental value

under the suggested optimum conditions

82

6.1 Internationally accepted Rf values of astaxanthin 93

6.2 Retention time for similar peaks in band 2 and standard 97

7.1 Comparison of protease and chitinase production of various

bacteria

103

7.2 Comparison of different extraction methods in obtaining

astaxanthin from various sources

104

Page 17: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

xiv

LISTS OF FIGURES

Figure Page

2.1 Chemical structure of 3,3’-dihydroxy-ß-carotene-4,4’-dione

(astaxanthin)

5

2.2 Chemical structure of chitin (2-acetamido-2-deoxy-D-glucose). 18

2.3 Chemical structure of chitosan 19

3.1 Flow chart of the experimental design 26

3.2 Chitinase and protease activity of isolated samples 31

3.3 Comparison of isolate S 010 and L 001 for their enzymatic

activity cultured in minimal synthetic media supplied with

SSWP

32

3.4 Negatively stained and coccobacilli shaped isolate S 010 viewed

under 400X magnification (a) and 1000X magnification (b)

36

4.1 Schematic diagram on various mechanical shell disruptions and

bacterial fermentation

41

4.2 Chitinase and protease activity of PTSW fermented with A.

hydrophila

48

5.1 Schematic diagram on the selection of sources and condition for

optimization of A. hydrophila with response surface

methodology

54

5.2 Enzyme activities of A. hydrophila cultured in different nitrogen

sources and concentration. (B.P- bacto peptone; MSG-

monosodium glutamate; Y.E.- yeast extract; S.N- sodium

nitrate)

57

5.3 Astaxanthin yield from shrimp shells cultured in different

nitrogen sources and concentrations

58

5.4 Enzyme activities, astaxanthin availability and growth of A.

hydrophila in different concentrations of MSG

60

5.5 Enzyme activities of A. hydrophila cultured in different

inorganic salt and concentrations. (NaCl- Sodium chloride;

CaCl- Calcium chloride; CuSO- Copper (II) sulphate).

62

5.6 Astaxanthin availability in various inorganic salts in different

concentrations

62

5.7 Enzyme activities of A. hydrophila cultured in different carbon

sources and concentrations

64

5.8 Astaxanthin availability in various carbon sources in different

concentrations

64

Page 18: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

xv

5.9 Enzyme activities, astaxanthin availability and growth of A.

hydrophila in different concentrations of glucose

65

5.10 Enzyme activities of A. hydrophila at various temperatures

tested

67

5.11 Response surface 3D plots showing interactions between MSG

and pH (a), glucose and pH (b), temperature and pH (c), glucose

and MSG (d), temperature and MSG (e) and temperature and

glucose (f) on protease activity

74

5.12 Response surface 3D plots showing interactions between MSG

and pH (a), glucose and pH (b), temperature and pH (c), glucose

and MSG (d), temperature and MSG (e) and temperature and

glucose (f) on chitinase activity.

77

5.13 Response surface 3D plots showing interactions between MSG

and pH (a), glucose and pH (b), temperature and pH (c), glucose

and MSG (d), temperature and MSG (e) and temperature and

glucose (f) on astaxanthin yield

81

5.14 Comparison of protease and chitinase activity (a) and

astaxanthin yield (b) between optimized media and un-

optimized media

83

6.1 Schematic diagram for purifying carotenoids from shrimp shells

for the detection of astaxanthin presence

87

6.2 Harvested fermentation cultures that have been centrifuged (a)

and three layers were present (b). The middle layer is known as

carotenoid layer where astaxanthin was found present.

88

6.3 Thin Layer Chromatography of carotenoids developed under

different mobile phases (a) benzene: ethyl acetate (1:1), (b)

petroleum ether: acetone: diethyl amine (10: 4: 1), (c) hexane:

isopropanol (1:1) and (d) hexane : acetone (3:1)

91

6.4 Thin layer chromatography of carotenoids developed with

hexane:acetone (3:1) mobile phase in a larger amount for

confirmation of HPLC. Photographed under low light condition

92

6.5 HPLC chromatogram of astaxanthin standard (Santa Cruz

Biotechnologies). The few peaks denote different isomer present

in the standard purchased

95

6.6 Peaks of similar retention time in Band 2 (upper) and standard

(lower)

96

Page 19: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

xvi

LIST OF APPENDICES

Appendix Page

A Gene sequence for S 010 145

B Analysis of astaxanthin available in the water after in cell

disruption

146

C ANOVA analysis for pH responses in various buffer systems 147

D HPLC chromatogram of scrapped out bands from TLC 161

Page 20: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

xvii

LISTS OF ABBREVIATIONS

% percentage

°C Degrees Celsius

µg Microgram

µl Microlitre

µm Micrometre

16S/18S Svedberg units

AMW Apparent Molecular Weight

ANOVA Analysis Of Variance

APCI Atomic Pressure Chemical Ionization

ATCC American Type Cell Culture

BLAST Basic Local Alignment Search Tool

BLIS Bacteriocin-Like Inhibitory Substances

CCD Central Composite Design

CFU Colony Forming Units

cm centimetre

DAD Diode Array Detector

DMAB Dimethylamino benzoic acid

DMSO Dimethyl Sulfoxide

DNA Deoxyriboneuclotide Acid

EDTA Ethylenediaminetetraacetic Acid

ESI Electronic Spray Ionization

FAO Food And Agriculture Organization Of The United

Nations

g Gram

g Gravity

GlcNAc N-acetylglucosamine

Page 21: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

xviii

h Hours

HCL Hydrochloric acid

HPLC High Performance Liquid Chromatography

HSD Honest Significant Difference

K2HPO4 Dipotassium Hydrogen Phosphate

kDa Kilo Dalton

L Litre

LCMS Liquid Chromatography Mass Spectrum

m Molarity

MALDI-TOF Matrix Assisted Laser Desorption/Ionization Time Of

Flight

mg Milligram

MgSO4.7H2O Magnesium Sulphate 7-Hydrate

mm Millimetre

MSA Minimal Synthetic Agar

MSG Monosodium Glutamate

MSM Minimal Synthetic Media

NaCl Sodium Chloride

NAFLD Non-Alcoholic Fatty Liver Disease

NCBI National Center for Biotechnology Information

nm Nanometre

NMR Nuclear Magnetic Resonance

OCP Orange Carotenoid Binding Proteins

OVAT One Variable At Time

PMSF Phenylmethylsulfonyl Fluoride

PTFE Polytetraflouroethylene

CC Column Chromatography

Page 22: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

xix

Rf Retention Factor

RNA Ribonucleic Acid

RPM Revolutions Per Minute

RSM Response Surface Methodology

SCSP Shrimp Crab Shell Powder

SFE Supercritical Fluid Extraction

SFO Single Factor Optimization

SPSS Statistical Package For Social Science

SSW Shrimp Shell Waste

SSWP Shrimp Shell Waste Powder

TLC Thin Layer Chromatography

USA United States of America

USD United States Dollar

UV Ultraviolet

UV-VIS Ultraviolet Visible

V Volume

w Weight

α Alpha

β Beta

λ Lambda

Page 23: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

1

CHAPTER 1

INTRODUCTION

In the recent years, the demand for food has been increasing drastically. As an

example, the aquaculture industries have incredibly grown in the past 50 years (Bostok

et al., 2010). The global production of fisheries, crustacean and mollusks according to

Fisheries Agricultural Organization has reached 91 million tons as of the year of 2012

with China being the largest producer (FAO, 2014). In food processing industries and

human consumptions, an average of 48-56% of crustacean weight is being discarded,

which includes antennae, carapaces, head, legs, shells, and tails (Pu et al., 2010). A

number of valuable recoverable substances such as chitins, carotenoids (astaxanthin)

and proteins can be recovered from these wastes. Numerous studies have shown the

presence of carotenoid with astaxanthin being the main carotenoid pigment in shrimps

(vary with species) (Sachindra et al., 2007; Shahidi et al., 1998). Being that crustacean

wastes that are left to degrade naturally or being used as land filling (Prameela et al.,

2012) are wasteful and causes environmental pollution; recycling the waste aids in

environmental issues and benefits the recovery of various valuable substances

especially astaxanthin.

Astaxanthin, (3’3-dihydroxy-β-carotene-4’4-dione) is naturally produced in microalgae

such as Haematococcus pluvialis, certain yeasts; Xanthophyllomyces dendrorhous,

(Dore and Cysewski, 2008) and the flower of the plant Adonis aestivalis (Cunningham

and Gantt, 2011) which was native to Europe. Secondarily, astaxanthin is found in

birds, fishes such as salmon, crustaceans such as krills, shrimps/prawn; Penaeus

monodon, (giant tiger prawn) crayfishes and filter feeders up taken in their dietary

supplements (Handayani et al., 2008). In certain shrimps, ingested beta-carotene can be

converted into astaxanthin by the cell’s activity (Latscha, 1990). Astaxanthin, which

provides coloration in animals varies according to the environment and its complex

structure, where it could be green, purple or blue (Sila et al., 2012) and red in cooked

crustaceans or when exposed to heat (North, 2002). The complexity of astaxanthin can

occur in three different forms in animals which are free molecules, forming complex

with protein (carotenoprotein) or lipid (carotenolipoproteins), or sterified (esters)

(Higuera-Ciapara et al., 2006).

This red pigment became important due to its unique DNA protective properties which

can be used as a supplement to boost human health (Yoshida et al., 2010). Besides

having high antioxidant properties (Capelli and Cysewski, 2007), astaxanthin is used in

various industries such as cosmetics (Seki et al., 2001), feed additives to provide

coloration (Paibulkichakul et al., 2008), and medical researches (Bhuvaneswari et al.,

2010). The importance of astaxanthin in today’s world has brought us to search for this

pigment intensity to meet the demand of various industries from the basics of

enhancing algae pigment production till genetically modified microbes to produce

natural astaxanthin (Cheng and Tao, 2012). This is because synthetically produced

astaxanthin do not give the same effect with natural astaxanthin although it fetches a

lower price of 2000 USD/kg (Ni et al., 2008) while naturally produced astaxanthin

from algae biomass fetches a higher price at 7000 USD/kg (Li et al., 2011a).

Page 24: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

2

The high price of natural astaxanthin renders a need to search for alternative ways to

feed these needing industries. An alternative way is to recycle crustacean wastes as it

contains natural astaxanthin. Previously recycling crustacean wastes was conducted

using strong acids and alkali under high temperature to increase the degradation rate

(Roberts et al., 2008). This traditional method is indeed efficient in recovering

substance such as chitin but making it almost impossible to recover other substrates

such as proteins, lipids and carotenoids (Healy et al., 2003). Furthermore, the current

method is expensive, non-environmental friendly (Rao et al., 2002) and requires extra

desalting before disposal due to high concentration of salts formed during

neutralization (Wang et al., 2006a). With the recent research advancement, managing

crustacean waste by chemicals was less preferred due to the complications arise and not

eco-friendly. Enzymatic degradation was more favorable compared to chemically treat

as the former was more environmentally friendly (Paul et al., 2015).

In the past two decades, alternative researches on managing crustacean wastes has been

more focused on the use of enzymes to degrade crustacean waste. Proteolytic enzymes

such as alcalases and trypsin (Synowiecki and Al-Khateeb., 2000), peptidases (Duarte

de Holanda and Netto, 2006), and Triton X-100 (Mizani and Aminlari, 2007) have

been used for hydrolysis on crustacean wastes. Enzymatic hydrolysis is certainly much

more eco-friendly than the use of chemicals. However, commercial enzymes are costly

to obtain and thus making it unsuitable for cost efficient studies (Prameela et al., 2012).

Microbial fermentations were found to be the most flexible, eco-friendly, and

economically viable method (Bashkar et al., 2007). Continuous supply of enzymes is

certain with microorganism fermentation technique; unlike the usage of commercial

enzymes where the enzyme capability has its limit (Synowiecki and Al-Khateeb, 2000).

Instead of enzymatic hydrolysis which only lasts a few hours and may have incomplete

hydrolysis, the continuous production of enzyme in microbial fermentation gives a

more complete hydrolysis which gives a higher yield of recovery in the compound of

interest (Jo et al., 2008). However, microbial fermentation usually takes a longer

completion time as compared to enzymatic hydrolysis.

In the interest of deproteinizing and demineralizing crustacean wastes for astaxanthin,

lactic acid fermentation has shown great success in recovering the pigment (Khanafari

et al., 2007). Lactic acid producing microbes has an advantage in demineralizing

crustacean wastes due to the production of lactic acid during fermentation (Pacheco et

al., 2009). The acid has the ability to dissolve the calcium present in the shells causing

demineralization and deproteinization to occur (Xu et al., 2008). However, this might

seems to be a disadvantage in non-lactic acid producing microbes. Yet, non-lactic acid

producing microbial fermentation has shown similar results in deproteinizing shrimp

and crab wastes (Giyose et al., 2010; Oh et al., 2007). Being that astaxanthin is usually

present in shrimp exoskeleton as carotenoproteins, carotenolipoproteins or

chitinocaroenoids which is a stable form (Sachindra, 2003). Deproteinization is

indispensably required to remove the protein-astaxanthin bond. Possessing other

enzymes or properties for non-lactic acid bacteria add an advantage to the fermentation

system; for instance chitinase for dechitinization. Not only that, enzymes from the

current bacteria might have similar potential with lactic acid fermentation as they

Page 25: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

3

showed similar deproteinizing results. In terms of cost, lactic acid bacteria are more

costly to be maintained than aerobic bacteria.

Until now, the knowledge on aerobic bacteria fermentation on recovery of astaxanthin

from crustacean wastes is lacking. Aerobic fermentation of crustacean wastes is mainly

focused on the recovery of chitins while the recovery of astaxanthin was less exploited.

The only knowledge of astaxanthin recovery from shrimp shell wastes were by

fermentations with lactic acid producing bacteria. Given that bacteria are ubiquitous in

our environment (Earl et al., 2008), they are cheap and easy to obtain. Therefore, this

provides a route for exploration on the possible recovery of astaxanthin by aerobic

bacteria fermentation. Moreover, the maintenance of microbes is less costly and

environmentally friendly. The addition of optimization to the microbe culturing media

may aid in enhancing its potential in astaxanthin recovery. In optimization studies

conducted by Nisha and Divakaran, (2014), enzyme activity was significantly

increased which eventually increases the activity of crustacean waste degradation.

Meanwhile crustaceans having their carapaces calcified (Finlay et al., 2009) may cause

difficulties to be broken down. Since the current study lack of natural acid production

during fermentation, therefore the addition of cell disruption may aid in decalcification

or demineralization of these shell wastes rendering bond loosening. Traditionally, cell

disruptions were conducted on algae/yeast (Foncesca et al., 2011) and plant cells to

assist inner cell substance extraction by breaking down the cell wall.

Therefore, the aim of the present study is to recover astaxanthin from shrimp shells

through fermentation with aerobic bacteria which produces chitinase and protease.

Both of these enzymes are required due to the presence of carotenoproteins and

interlinks between chitins and proteins (Wang et al., 2007). In addition, shrimp shells

are calcified and the selected bacterium may not produce natural acids to act as

decalcifying agent. Therefore, the selection of a few basic cell disruption techniques

may aid the process of astaxanthin extraction by removing minerals and possible

calcium. Cell disruption techniques were chosen based on its success in extracting

astaxanthin from algae and yeast cells (Xiao et al., 2008; Mendes-Pinto et al., 2001).

Unfortunately, its effectiveness on shrimp shells was yet to be determined as the shells

were not living cells. So far there were not many records on optimizing both enzyme

productions (namely chitinase and protease) in aid of astaxanthin recovery in addition

to aerobic microbial fermentation. Due to that non-lactic acid fermenting bacteria are

chosen for this study, both enzymes are crucial in deproteinization and dechitinization

of the wastes. Although the knowledge on astaxanthin purification from shrimp shells

has been well known, but the purification of pigment resulted from aerobic microbial

fermentations on shrimp shell wastes was yet to be fully explored. With the current

knowledge and technology, purification of astaxanthin from microbial fermentation

possesses certain challenges in obtaining and maximizing the yield of the pigment.

Astaxanthin exists as a complex carotenoid structure in shrimps and is less likely to be

oxidized. By using a green approach, this research focuses on releasing intact

astaxanthin where the ultimate goal is to recover astaxanthin from shrimp shell wastes

using aerobic bacteria. In order to achieve this, isolations were carried out to search for

suitable deproteinizing and dechitinizing bacteria. The bacteria obtained may not be

lactic acid producing and therefore requires external shell disruptions to further remove

calcium and minerals present in the wastes. Selected shell disruption methods were

Page 26: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

4

non-chemical based which cause less harm to the environment. Deproteinization and

dechitinization are crucial in obtaining astaxanthin hence, optimization of the culture

media and conditions were investigated to increase enzyme activities. An increase in

enzyme activity leads to an increase in the amount of recoverable astaxanthin. This

pigment will be extracted and purified with the common chromatography techniques

(Thin Layer Chromatography and High Performance Liquid Chromatography) to

confirm its presence through this aerobic fermentation system.

In order to achieve the present goal, four objectives were laid out as follows:

1. To isolate and identify bacteria from shrimp shell waste areas that produce

maximum chitinase and protease

2. To evaluate the effectiveness of shell disruptions on astaxanthin recovery

3. To optimize growth media, pH, and temperature for optimal enzyme production

and astaxanthin recovery

4. To quantify and validate astaxanthin recovered from the present microbial

approach.

Page 27: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

108

REFERENCES

Aam, B.B., Heggset, E.B., Norberg, A.L., Sørlie, M., Vårum, K.M. and Eijsink,

V.G.H. 2010. Production of Chitooligosaccharides and Their Potential

Applications in Medicine. Marine Drugs. 8: 1482-1517.

Abbott, S.L., Cheung W.K.W., and Janda, J.M. 2003. The genus Aeromonas:

Biochemical characteristics, atypical reactions, and phenotypic

identification schemes. Journal of Clinical Microbiology. 41: 2348-2357.

Abd El-Baky, H.H., El Baz, F.K., and El-Baroty, G.S. 2004. Production of

Antioxidant by the Green Alga Dunaliella salina. International Journal of

Agriculture and Biology. 6: 49-57.

Abdel-Fattah, Y.R., Soliman, N.A., El-Toukhy, N.M., El-Gendi, H., and Ahmed,

R.S. 2013. Production, purification, and characterization of thermostable 𝛼-

amylase produced by Bacillus licheniformis Isolate AI20. Journal of

Chemistry. 2013: 1-11.

Abulhamd, A. 2010. Genetic diversity and antimicrobial susceptibility of motile

aquatic Aeromonads. International Journal of Chemical Engineering and

Applications. 1: 90-95.

Adinarayana, K. And Ellaiah, P. 2002. Response surface optimization of the critical

medium components for the production of alkaline protease by a newly

isolated Bacillus sp. Journal of Pharmacy and Pharmaceutical Sciences.5:

272-278.

Ahmed, A., Hafiz, S., Ahmed, Q., Majeed, H., and Syed, S. 1998. Sensitivity pattern

and beta-lactamase production in clinical isolates of Aeromonas strains. The

Journal of the Pakistan Medical Association. 48: 158-161.

Al-Fatlawy, H.N.K. and Al-Hadrawy, H.A. 2014. Isolation and Characterization of

Aeromonas hydrophila from the Al-Jadryia River in Baghdad (Iraq).

American Journal of Educational Research. 2: 658-662.

Allan, B.J., and Stevenson, R.M.W. 1981. Extracellular virulence factors of

Aeromonas hydrophila in fish infections. Canadian Journal of

Microbiology. 27: 1114-1122.

Ambati, R.R., Phang, S.M., Ravi, S., and Aswathanarayana, R.G. 2014. Astaxanthin:

Sources, Extraction, Stability, Biological Activities and Its Commercial

Applications: A Review. Marine Drugs. 12: 128-152.

Amit, V., Singh P.H., Rachna, S., and Sanjeev, A. 2011. Potential of alkaline

protease isolated from Thermoactinomyces sp. RM4 as an alternative to

conventional chemicals in leather industry dehairing. International Journal

of Agriculture Environment and Biotechnology. 4: 173- 178.

Page 28: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

109

Andersen, O.M. and Francis, G.W. (1996). Natural pigments. In J. Sherma and B.

Fried (Eds.) Handbook of Thin Layer Chromatography (pp.715-752). New

York: Marcel Dekker.

Aoi, W., Naito, Y., Takanami, Y., Ishii, T., Kawai, Y., Akagiri, S., Kato, Y., Osawa,

T., and Yoshikawa, T. 2008. Astaxanthin improves muscle lipid

metabolism in exercise via inhibitory effect of oxidative CPT I

modification. Biochemical and Biophysical Research Communications.

366: 892-897.

Aravena-Román, M., Inglis, J.J.T., Henderson, B., Riley, T.V., and Chang B.J. 2012.

Antimicrobial susceptibilities of Aeromonas strains isolated from clinical

and environmental sources to 26 antimicrobial agents. Antimicrobial Agents

and Chemotherapy. 56: 1110–1112.

Arbia, W., Arbia, L., Adour, L., and Amrane, A. 2013. Chitin extraction from

crustacean shells using biological methods – a review. Food Technology

and Biotechnology. 51: 12–25.

Ault A. (1998). Techniques and Experiments for Organic Chemistry (6th ed.).

California, United States of America: University Science Books.

Babu, C.M., Chakrabarti, R., and Sambasivarao, K.R.S. 2008. Enzymatic isolation

of carotenoid-protein complex from shrimp head waste and its use as a

source of carotenoids. LWT- Food Science and Technology. 41: 227-235.

Baldwin, C. and Robinson, C.W. 1990. Disruption of Saccharomyces cerevisiae

using enzymatic lysis combined with high-pressure homogenization.

Biotechnology Techniques. 4: 329-334.

Banwart, G.J. (1979). Basic Food Microbiology. Westport: AVI Publishers.

Barlow, R. and Gobius, K. 2009. Environmental reservoirs of integrons: The

contribution of production environments to the presence of integrons in

beef cattle. Poster presented at the annual meeting of Australia Society for

Microbiology, Perth, Western Australia.

Benov, L. and Al-Ibrahim, J. 2002. Disrupting Escherichia coli: A comparison of

methods. Journal of Biochemistry and Molecular Biology. 35: 428-431.

Bernhard, K. 1989. Synthetic astaxanthin. The route of a carotenoid from research to

commercialization. In N.I. Krinsky, M.M Mathews-Roth, and R.F. Taylor

(Eds.), Carotenoids Chemistry and Biology (pp 337-363). New York,

Springer US.

Beyler, C.L. and Hirschler, M.M. 2002. Thermal Decomposition of Polymers. In P.

J. Di Nenno, C. L. Beyler, R. L. P. Custer, W. D. Walton, J. M. Watts, D. D

Drysdale, and J. R. Hall (eds), SFPE Handbook of Fire Protection

Engineering (3rd ed.) (pp. 110). Quincy: National Fire Protection

Association.

Page 29: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

110

Bhaskar, N., Suresh, P.V., Sakhare, P.Z., and Sachindra, N.M. 2007. Shrimp

biowaste fermentation with Pediococcus acidolactici CFR2182:

optimization of fermentation conditions by response surface methodology

and effect of optimized conditions on deproteination/demineralization and

carotenoid recovery. Enzyme Microbial Technology. 40: 1427-1434.

Bhattacharya, D., Nagpure, A. and Gupta, R.K. 2007. Bacterial Chitinases:

Properties and Potential. Critical Review in Biotechnology. 27: 21-28.

Bhavsar, S.P., Singh, K.G., and Sharma, L.P. 2016. Microbial production of

astxanthin pigment using marine shrimp. Indian Journal of Geo-Marine

Science. 45: 352-357.

Bhuvaneswari S., Arunkumar E., Viswanathan P., and Anuradha C.V. (2010).

Astaxanthin restrics weight gain, promotes insulin sensitivity and curtails

fatty liver disease in mice fed a obesity-promoting diet. Process

Biochemistry. 45: 1406-1414.

Bjerkeng, B. (2000). Carotenoid pigmentation of salmonid fishes - recent progress.

In: L.E. Cruz –Suárez, D. Ricque-Marie, M. Tapia- Salazar, M.A.Y.

Olvera-Novoa, and R. Civera-Cerecedo (Eds.), Avances en Nutrición

Acuícola V. Memorias del V Simposium Internacional de Nutrición

Acuícola (pp. 71-89). Mérida, Yucatán: Mexico.

Blackwell, J., Parker, K.D., and Rudall, K.M. (1965). Chitin in pogonophore tubes.

Journal of Marine Biology. 45: 659-661.

Boominadhan, U., Rajakumar, R., Sivakumaar, P.K.V., and Joe, M.M. 2009.

Optimization of protease enzyme production using Bacillus sp. isolated

from different wastes. Botany Research International. 2: 83-87.

Boonyaratpalin, M., Throngrod, S., Supamattaya, K., Britton, G., and Schlipalius,

L.E. 2001. Effects of β-carotene source, Dunaliella salina and astaxanthin

on pigmentation, growth, survival and health of Penaeus monodon.

Aquaculture Research. 32: 182-190.

Bosshard, P. P., Zbinden, R., Abels, S., Böddinghaus, B., Altwegg, M., and Böttger,

E. C. 2006. 16S rRNA gene sequencing versus the API 20 NE system and

the Vitek 2 ID-GNB card for identification of nonfermenting gramnegative

bacteria in the clinical laboratory. Journal of Clinical Microbiololgy.

44:1359–1366.

Bostock, J., McAndrew, B., Richards, R., Jauncey, K., Telfer, T., Lorenzen, K.,

Little, D., Ross, L., Handisyde, N., Gatward, I., and Corner, R. 2010.

Aquaculture: global status and trends. Philosophical Transactions of The

Royal Society B. 365: 2897-2912.

Boussiba, S. 2000. Carotenogenesis in the green alga Haematococcus pluvialis:

cellular physiology and stress response. Physiologia Plantarum. 108: 111–

117.

Page 30: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

111

Bowen, J., Soutar, C., Serwata, R.D., Lagocki, S., White, D.A., Davies, S.J., and

Young, A.J. 2002. Utilization of (3S,3’S)-astaxanthin acyl esters in

pigmentation of rainbow trout (Oncorhynchus mykiss). Aquaculture

Nutrition. 8: 59-68.

Brenner, D.J., Hickman-Brenner, F.W., Lee, J.V., Steigerwalt, A.G., Fanning, G.R.,

Hollis, D.G., Farmer III, J.J., Weaver, R.E., Joseph, S.W., and Seidler, R.J.

1983. Vibrio furnissii (formerly aerogenic biogroup of Vibrio fluvialis), a

new species isolated from human feces and the environment. Journal of

Clinical Microbiology. 18: 816.

Britton G. 1995. Structure and properties of carotenoids in relation to function.

Federation of American Societies for Experimental Biology Journal. 9:

1551-1558.

Britton, G. (2008). TLC of carotenoids. In M. Waksmundzka-Hajnos, J. Sherma, and

T. Kowalska (Eds.). Thin Layer Chromatography in Phytochemistry. Boca

Raton: CRC Press.

Britton, G. and Helliwell, J.R. (2008). Carotenoid-protein interactions. In G. Britton,

S. Liaaen-Jensen, and H. Pfander (Eds.), Carotenoids. Basel: Birkhauser

Verlag.

Britton, G., Armitt, G.M., Lau S. Y. M., Patel A. K., and Shone С. С. (1982).

Carotenoproteins. In G. Britton and T. W. Goodwin (Eds.) Carotenoid

Chemistry and Biochemistry. Oxford-New York: Pergamon Press.

Britton, G., Liaanen-Jensen, S. and Pfander, H. (Eds.). 2004. Carotenoid handbook.

Basel: Birkhauser Verlag.

Brodsky, R.A., Mukhina, G.L., Nelson, K.L., Lawrence, T.S., Jones, R.J., and

Buckley, J.T. 1999. Resistance of paroxysmal nocturnal hemoglobinuria

cells to the glycosylphosphatidylinositol-binding toxin aerolysin. Blood. 93:

1749–56.

Bruckner, R., and Titgemeyer, F. 2002. Carbon catabolite repression in bacteria:

choice of the carbon source and autoregulatory limitation of sugar

utilization. FEMS Microbiology Letters. 209: 141-148.

Brzezinska, M.S. and Donderski, W. 2001. Occurrence and activity of the

chitinolytic bacteria of Aeromonas genus. Polish Journal of Environmental

Studies. 10: 27-31.

Buchwald, M. And Jencks, W.P. 1968. Properties of the crustacyanins and the

yellow lobster shell pigment. Biochemistry. 7: 844-859.

Byreddy, A.R., Gupta, A., Barrow, C.J., and Puri, M. 2015. Comparison of cell

disruption methods for improving lipid extraction from Thraustochytrid

strains. Marine Drugs. 13: 5111-5127.

Page 31: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

112

Bzducha-Wrobel, A., Blazejak, S., Kawarska, A., Stasiak-Rozanska, L., Gientka, I.,

and Majewska, E., 2014. Evaluation of the efficiency of different disruption

methods on yeast cell wall preparation for β-Glucan isolation. Molecules.

19: 20941-20961.

Cahu, T.B., Santos, S.D., Mendes, A., Córdula, C.R., Chavante, S.F., Carvalho Jr,

L.B., Nader, H.B., and Bezerra, R.S. (2012). Recovery of protein, chitin,

carotenoids and glycosaminoglycans from Pacific white shrimp

(Litopenaeus vannamei) processing waste. Process Biochemistry. 47: 570-

577.

Canals, R., Altarriba, M., Vilches, S., Horsburgh, G., Shaw, J.G., and Tomás, J.M.,

2006. Analysis of the lateral flagellar gene system of Aeromonas hydrophila

AH-3. Journal of Bacteriology. 188: 852-862.

Cao, W.H., Zhang, C.H., Hong, P.Z., and Ji, H.W. 2008. Response surface

methodology for autolysis parameters optimization of shrimp head and

amino acids released during autolysis. Food Chemistry. 109: 176-183.

Cao, W.H., Zhang, C.H., Hong, P.Z., Ji, H.W., and Zhang, J. 2009. Autolysis of

shrimp head by gradual temperature and nutritional quality of the resulting

hydrolysate. LWT- Food Science and Technology. 42: 244-249.

Capelli, B. and Cysewski, G. 2007. Astaxanthin Natural Astaxanthin: King of

Carotenoids. Kailua-Kona, USA: Cyanotech Corporation.

Capelli, B., Bagachi, D., and Cysewski, G. 2013. Synthetic astaxanthin is

significantly inferior to algal-based as an antioxidant and may not be

suitable as human nutraceutical supplement. Nutrafoods. 12: 145-152.

Carvalho, L.M.J., Smiderle, L.A.S.M., Carvalho, J.L.V., Cardoso, F.S.N., and

Koblitz, M.G.B. 2014. Assessment of carotenoids in pumpkins after

different home cooking conditions. Food Science and Technology. 34: 365-

370.

Chakraborty, T., Huhle, B., Hof, H., Bergbauer, H., and Goebel, W. 1987. Marker

exchange mutagenesis of the aerolysin determinant in Aeromonas

hydrophila demonstrates the role of aerolysin in A. hydrophila-associated

systemic infections. Infection and Immunity. 55: 2274–80.

Chan, K.G., Puthucheary, S.D., Chan, X.Y., Yin, W.F., Wong, C.S., Too, W.S.S.,

and Chua, K.H. 2011. Quorum Sensing in Aeromonas species isolated from

patients in Malaysia. Current Microbiology. 62:167-172.

Chancharoonpong, C., Hsieh, P.C., and Sheu, S.C. 2012. Enzyme production and

growth of Aspergillus oryzae S. on soybean koji fermentation. APCBEE

Procedia. 2: 57-61.

Chang, M.C., Chang, J.C. and Chen, J.P. 1993. Cloning and neuclotide sequence of

an extracellular α-amylase gene from Aeromonas hydrophila MCC-1.

Journal of General Microbiology. 139: 3215-3223.

Page 32: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

113

Chang, W.T., Chen, M.L., and Wang, S.L. 2010. An antifungal chitinase produced

by Bacillus subtillis using chitin waste as a carbon source. World Journal of

Microbiology and Biotechnology. 26: 945-950.

Chatterjee, S., Adhya, M., Guha, A.K., and Chatterjee, B.P. 2005. Chitosan from

Mucor rouxii: production and physico-chemical characterization. Process

Biochemistry. 40:395-400.

Chauhan, M. and Singh, P. 2013. Production, optimization and characterization of

chitinase enzyme by Bacillus subtilis. Agriways. 1: 5-11.

Chauhan, S. R. and Dass, K. 2013. Dry sliding wear behavior of titanium (grade 5)

alloy by using response surface methodology. Advances in Tribology. Doi:

10.1155/2013/272106

Chayen, N.E., Cianci, M., Grossmann, J.G., Habash, J., Helliwell, J.R., Nneji, G.A.,

Raftery, J., Rizkallah, P.J., and Zagalsky, P.F., 2003. Unravelling the

structural chemistry of the colouration mechanism in lobster shell. Acta

Crystallographica Section D Biological Crystallography. 59: 2072– 2082.

Cheesman, D.F. and Prebble, J. 1966. Astaxanthin ester as a prosthetic group: A

carotenoprotein from the hermit crab. Comparative Biochemical and

Physiology. 17: 929-935.

Chen, W.L., Liang, J.B., Jahromi, M.F., Ho, Y.W., and Abdullah, N. 2013.

Optimization of multi-enzyme production by fungi isolated from palm

kernel expeller using response surface methodology. Bioresources. 8: 3844-

3857.

Cheng, Q. and Tao, L. 2012. Engineering Escherichia coli for canthaxanthin and

astaxanthin biosynthesis. Methods in Molecular Biology. 892: 143-158.

Chien, Y.H. and Shiau, W.C. 2005. The effects of dietary supplementation of algae

and synthetic astaxanthin on body astaxanthin, survival, growth, and low

dissolved oxygen stress resisitant of kuruma prawn, Marsupenaeus

japonicas Bate. Journal of Experimental Marine Biology and Ecology.

318: 201-211.

Chiou, S.F. and Chang, M.C. 1994 Correlation between extracellular enzymes and

virulence of Aeromonas hydrophila. Journal of the Fish Society of Taiwan.

21: 369-379.

Chisti, Y. and Moo-Young, M. 1986. Distuption of microbial cells for intracellular

products. Enzyme Microbiology Technology. 8: 194-204.

Choi, S.K., Nishida, Y., Matsuda, S., Adachi, K., Kasai, H., Peng, X., Komemushi,

S., Miki, W., and Misawa, N. 2005. Characterization of b-Carotene

Ketolases, CrtW, from Marine Bacteria by Complementation Analysis in

Escherichia coli. Marine Biotechnology. 7: 515–522.

Chopra A.K. and Houston, C.W. 1999. Enterotoxins in Aeromonas-associated

gastroenteritis. Microbes and Infection. 1: 1129–1137.

Page 33: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

114

Chovatiya, S., Dhola, K., Patel, P., and Ingale, S. 2014. Isolation, characterization

and optimization of protease enzyme producing micro-organism from

gastrointestinal tract of Labeo rohita. International Journal Of Pure and

Applied Bioscience. 2: 124-134.

Chu, I.M., Lee, C., and Li, T.S. 1992. Production and degradation of alkaline

protease in batch cultures of Bacillus subtilis ATCC 14416. Enzyme

Microbial Technology. 14:755-761.

Chuang, Y.C., Chiou, S.F., Su, J.H., Wu, M.L., and Chang, M.C. 1997. Molecular

analysis and expression of the extracellular lipase of Aeromonas hydrophila

MCC-2. Microbiology. 143: 803–812.

Cipriano, R.C. 2001. Aeromonas hydrophila and motile Aeromonad septicemias of

fish. Revision of Fish Disease Leaflet 68: 1-25.

Cira, L.A., Huerta, S., Hall, G.M., and Shirai, K. 2002. Pilot scale lactic acid

fermentation of shrimp wastes for chitin recovery. Process Biochemistry.

37: 1359-1366.

Ciudad, G., Rubilar, O., Azócar, L., Toro, C., Cea, M., Ribera, A.T.A., and Navia,

R. 2014. Performance of an enzymatic extract in Botrycoccus braunii cell

wall disruption. Journal of Bioscience and Bioengineering. 117: 75-80.

Colwell, R.R., MacDonell, M.T., and De Ley, J. 1986. Proposal to recognize the

family Aeromonadaceae fam. nov. International Journal of Systematic

Bacteriology. 36: 473-477.

Cooney, M., Young, G., and Nagle, N. 2009. Extraction of bio-oils from microalgae.

Separation and Purification Reviews. 38: 291–325.

Corradini D. (2010). Handbook of HPLC (2nd ed.). Washington, United States of

America: CRC Press Taylor and Francis Group.

Cserhati, T. and Forgacs, E. 2000. Separation and tentative identification of the main

pigment fraction of raisins by thin-layer chromatography-fourier transform

infrared and high-performance liquid chromatography-ultraviolet detection.

Journal of Chromatographic Science. 38: 145-150.

Cunningham, F.X. Jr. and Gantt E. 2011. Elucidation of the pathway to astaxanthin

in the flowers of Adonis aestivalis. The Plant Cell. 23: 3055–3069.

Dahiya, N., Tewari, R., Tiwari, R.P., and Hoondal, G.S. 2005. Chitinase from

Enterobacter sp. NRG4: Its purification, characterization and reaction

pattern. Electronic Journal of Biotechnology. 8: 134-145.

Dai, D.H., Hu, W.L., Huang, G.R., and Li, W. 2011. Purification and

characterization of a novel extracellular chitinase from thermophilic

Bacillus sp. Hu1. African Journal of Biotechnology. 10: 2476-2485.

Dalei, J. and Sahoo, D. 2015. Extraction and characterization of astaxanthin from the

crustacean shell waste from shrimp processing industries. International

Journal of Pharmaceutical Sciences and Research. 6: 2532-2537.

Page 34: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

115

Daniel, R.M., Dines, M. and Petach, H. 1996. The denaturation and degradation of

stable enzymes at high temperature. Biochemical Journal. 317: 1-11.

Das, S. and Ganesh, E.A. 2009. Extraction of chitin from trash crabs

(Podophthalamus vigil) by an eccentric method. Current Research Journal

of Biological Sciences. 2: 72-75.

Daskalov H. 2006. The importance of Aeromonas hydrophila in food safety. Food

Control. 17: 474-483.

De Melo, M.R., Moraes, T.C., da Rocha, C.B., Gasparin, F.G.M., and Celligoi,

M.A.P.C. (2014, October). Effect of carbon source on lipase production by

Aeromonas sp. isolated from dairy effluent. Poster presented at the 5th

Congress of the Brazilian Biotechnology Society (SBBIOTEC),

Florianópolis, Brazil.

Dehdari, Z., Kargar, M., Mohkam, M., and Ghasemi, Y. 2012. Optimization of

cultural conditions for production of chitinase by Aeromonas sp. ZD-05.

Research in Pharmaceutical Sciences. 7: 5468.

Delamare, A.P., Echeverrigaray, S., Duarte, K.R., Gomes, L.H., and Costa, S.O.

2002. Production of a monoclonal antibody against Aeromonas hydrophial

and its application to bacterial identification. Journal of Applied

Microbiology. 92: 936

Desai, R.K., Streefland, M., Wijffels, R.H., and Eppink, M.H.M. 2016. Novel

astaxanthin extraction from Haematococcus pluvialis using cell

permeabilising ionic liquids. Green Chemistry. 18: 1261- 1267.

Deutscher, J. 2008. The mechanisms of carbon catabolite repression in bacteria.

Current Opinion in Microbiology. 11:87–93.

Devlieghere, F., Lefevere, I., Magnin, A., Debevere, J. 2000. Growth of Aeromonas

hydrophila in modified-atmosphere-packed cooked meat products. Food

Microbiology. 17: 185-196.

Dhake, A.B., and Patil, M.B. 2007. Effect of substrate feeding on production of

fructosyltransferase by Penicillium purpurogenum. Brazilian Journal of

Microbiology. 38: 194-199.

Di Mario, F., Rapanà, P., Tomati, U., and Galli, E. 2008. Chitin and chitosan from

Basidiomycetes. International Journal of Biological Macromolecules. 43:8-

12.

Divakar, K., Priya, J.D.A., and Gautam, P. 2010. Purification and characterization of

thermostable organic solvent-stable protease from Aeromonas veronii

PG01. Journal of Molecular Catalysis B: Enzymatic. 66: 311–318.

Dombek, K.M. and Ingram, L.O. 1986. Magnesium limitation and its role in

apparent toxicity of ethanol during yeast fermentation. Applied and

Environmental Microbiology. 52: 975-981.

Page 35: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

116

Dong, S., Huang,Y., Zhang, R., Wang, S., and Liu Y. 2014. Four different methods

comparison for extraction of astaxanthin from green alga Haematococcus

pluvialis. The Scientific World Journal. 19: 1-7.

Dore, J.E. and Cysewski, G.R. (2008). Haematococcus algae meal as a source of

natural astaxanthin for aquaculture feeds. Kailua-Kona, USA: Cyanotech

Corporation.

Duarte De Holanda, H.D. and Netto, F.M. 2006. Recovery of components from

shrimp (Xiphopenaeus kroyeri) processing waste by enzymatic hydrolysis.

Journal of Food Science. 71: 298-303.

Dzung, N. (2010). Enhancing crop production with chitosan and its derivatives. In:

S.K. Kim (Ed), Chitin, Chitosan, Oligosaccharides and their Derivatives

(pp. 619-631). New York: CRC Press.

Earl, A.M., Losick, R., and Kolter, R. 2008. Ecology and genomics of Bacillus

subtilis. Trends in Microbiology. 16: 269-275.

Ellaiah, P., Divakar, G., Vasu, P., Sunitha, M., and Shankar, P.U. 2005. Studies on

process and nutritional parameters for production of alkaline protease by

Thermoactinomyces thalpophilus PEE 14. Indian Journal of Biotechnology.

4: 497-500.

Esteve, C. and Birkbeck, T.H. 2004. Secretion of haemolysins and proteases by

Aeromonas hydrophila EO63: Separation and characterization of the serine

protease (caseinase) and the metalloprotease (Elastase). Journal of Applied

Microbiology. 96: 994-1001.

Evangelista-Barreto, N.S., Vieira R.H.S.F., Carvalho, F.C.T., Torres, R.C.O.,

Sant’anna E.S., Rodrigues, D.P., and Reis, C.M.F. 2006. Aeromonas spp.

Isolated from oysters (Crassostrea rhizophorea) from a natural oyster bed,

Ceará, Brazil. Revista do Instituto de Medicina Tropical de São Paulo. 48:

129-133.

FAO yearbook. 2014. Fisheries and Aquaculture Statistics. Statistiques des pêches et

de l’aquaculture. Estadísticas de pesca y acuicultura. 2012. Rome, FAO

Fass, R.J., Barnishan, J., and Helsel, V.L. 1987. Antimicrobial susceptibilities of

Aeromonas species and Plesiomonas shigelloides. Experientia. 43: 360-361.

Femi-Ola, T.O. and Bamidele, O.S. 2012. Studies on the catalytic properties of

partially purified alkaline proteases from some selected microorganisms.

Malaysian Journal of Microbiology. 8: 191-196.

Ferrero, M.A. 2000. Protein hydrolysis. Food Microbiology Protocols. 14: 227-232.

Fetzer, J.C. (2000). Large (C24) polycyclic aromatic hydrocarbons: Chemistry and

analysis. New York, NY: Wiley Interscience.

Finlay, H. S., Wood, H. L., Kendall, M. A., Spicer, J. I., Twitchett, R. J., and

Widdicombe, S. 2009. Calcification, a physiological process to be

considered in the context of the whole organism. Biogeosciences Discuss. 6:

2267–2284.

Page 36: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

117

Fonseca, R.A.S., Rafael, R.S., Kalil, S.J., Burkert, C.A.V., and Burkert, J.F.M. 2011.

Different cell disruption methods for astaxanthin recovery by Phaffia

rhodozyma. African Journal of Biotechnology. 10: 1165- 1171.

Forage, R.G., Harrison, D.E.F., and Pitt, D.E. 1985. Effect of Environment on

Microbial Activity. In M. Moo-Young (Ed.) Comprehensive Biotechnology

Vol. 1 (pp: 251-280). Oxford, Toronto, Sydney, Frankfurt, New York:

Pergamon Press.

Foss, P., Renstrom, B., and Liaanen-Jensen, S. 1987. Natural occurance of

enantiomeric and meso astaxanthin 7*- crustaceans including zooplankton.

Comparative Biochemistry and Physiology-Part B. 86: 313-314.

Fox, D.L. 1973. Chitin-bound keto-carotenoids in a crustacean carapace.

Comparative Biochemistry and Physiology Part B: Comparative

Biochemistry. 44: 953-962.

Francki, K.T., Chang, B.J., Mee, B.J., Collignon, P.J., Susai, V., and Keese, P.K.

2000. Identification of genes associated with copper tolerance in an

adhesion-defective mutant of Aeromonas veronii biovar sobria. FEMS

Immunology and Medical Microbiology. 29: 115-121.

Fried, B. and Sherma, J. 1999. Thin layer chromatography Revised and Expanded

(4th ed.). Basel, Switzerland: Marcel Dekker.

Gangadharan, D., Sivaramakrishnan, S., Nampoothiri, K.M., Sukumaran, R.K., and

Pandey, A. 2008. Response surface methodology for the optimization of

alpha amylase production by Bacillus amyloliquefaciens. Bioresource

Technology. 99: 4597-4602.

Ghasemi, Y., Dehdari, Z., Mohkam, M., and Kargar, M. 2013. Isolation and

optimization of cultivation conditions for production of chitinase by

Aeromonas sp. ZD_05 from the Persian Gulf. Journal of Pure and Applied

Microbiology. 7: 913-918.

Ghenghesh, K. S., Ahmed, S. F., El-Khalek, R. A., Al-Gendy, A., and Klena, J.

2008. Aeromonas infections in developing countries. Journal of Infection

in Developing Countries. 2: 81–98.

Ghenghesh, K.S., Rahouma, A., Zorgani, A., Tawil, K., Al Tomi, A., and Franka, E.

2015. Aeromonas in Arab countries: 1995-2014. Comparative Immunology,

Microbiology and Infectious Diseases. 42: 8-14.

Ghorbel-Bellaaj, O., Jellouli, K., Younes, I., Manni, L., Salem, M.O., and Nasri, N.

2011. A solvent-stable metalloprotease produced by Pseudomonas

aeruginosa A2 grown on shrimp shell wastes and its application in chitin

extraction. Applied Biochemistry and Biotechnology. 164: 410-425.

Ghorbel-Bellaaj, O., Manni, L., Jellouli, K., Hmidet, N., and Nasri, M. 2012a.

Optimization of protease and chitinase production by Bacillus cereus SV1

on shrimp shell waste using statistical experimental design. Biochemical

and molecular characterization of the chitinase. Annals of Microbiology. 62:

1255-1268.

Page 37: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

118

Ghorbel-Bellaaj, O., Younes, I., Maâlej, H., Hajji, S., and Nasri, M. 2012b. Chitin

extraction from shrimp shell waste using Bacillus bacteria. International

Journal of Biological Macromolecules. 51: 1196– 1201.

Ghosal, S and Srivastava, A.K. (2009). Fundamentals of bioanalytical techniques

and instrumentation. New Delhi, India: PHI learning Private Limited.

Gimeno, M., Ramírez-Hernández, J.Y., Mártinez-Ibarra, C., Pacheco, N., García-

Arrazola, R., Bárzana, E., and Shirai, K. 2007. One-solvent extraction of

astaxanthin from lactic acid fermented shrimp wastes. Journal of

Agriculture and Food Chemistry. 55: 10345-10350.

Giyose, N.Y., Mazomba, N.T. and Mabinya, L.V. 2010. Evaluation of proteases

produced by Erwinia chrysanthemi for the deproteinization of crustacean

waste in a chitin production process. African Journal of Biotechnology. 9:

707-710.

Gneckal, H., and Tari, C. 2005. Alkaline protease production from alkalophilic

Bacillus sp. Isolated from natural habitats. Enzyme and Microbial

Technology. 39:703-710.

Gobius, K.S. and Pemberton, J.M. 1988. Molecular cloning, characterization, and

nucleotide sequence of an extracellular amylase gene from Aeromonas

hydrophila. Journal of Bacteriology. 170: 1325-1332.

Goldberg, S. 2008. Mechanical/physical methods of cell disruption and tissue

homogenization. Methods in Molecular Biology. 424:3-22.

Godfrey, T., and Reichelt, J. (1983). Industrial Enzymology. New York: Nature

Press.

Golkhoo, S., Barantalab, F., Ahmadi, A.R., and Hassan, Z.M. 2007. Purification of

astaxanthin from mutant of Phaffia rhodozyma JH-82 which isolated from

forest trees of Iran. Pakistan Journal of Biological Sciences. 10: 802-805.

Gomaa, E.Z. 2013. Optimization and characterization of alkaline protease and

carboxymethyl-cellulase produced by Bacillus pumillus grown on Ficus

nitida wastes. Brazilian Journal of Microbiology. 44: 529-537.

Gomez Ramirez, M., Rojas Avelizapa, L.I., Rojas Avelizapa, N.G., and Cruz

Camarillo, R. 2004. Colloidal chitin stained with Remazol Brilliant Blue

R®, a useful substrate to select chitinolytic microorganisms and to evaluate

chitinases. Journal of Microbiology Methods. 56: 213-219.

Goodfellow, D., Moss, G.P., Szabolcs, J., Toth, Gy., and Weedon, B.C.L. 1973.

Configuration of carotenoid epoxides. Tetrahedron Letters. 14: 3925 –

5928.

Gortari, M.C. and Hours, R.A. 2013. Biotechnological processes for chitin recovery

out of crustacean waste: A mini review. Electronic Journal of

Biotechnology. doi: 10.2225/vol16issue3fulltext10

Page 38: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

119

Griffiths, A.J.F., Miller, J.H., Suzuki, D.T., Lewontin, R.C., and Gelbart, W.M.

(2000). An Introduction to Genetic Analysis (7th ed.). New York: W. H.

Freeman.

Guerin, M., Huntley, M.E., and Olaizola, M. 2003. Haematococcus astaxanthin:

Applications for human health and nutrition. Trends Biotechnology. 21:

210-216.

Gupta, S., Bhushan, B., and Hoondal, G.S. 1999. Enhanced production of xylanase

from Staphylococcus sp. SG-13 using amino acids. World Journal of

Microbiology and Biotechnology. 15: 511-512.

Guyomarch, F., Binet, A., and Dufosse, L. 2000. Production of carotenoids by

Brevibacterium lines: variation among strains, kinetic as pects and HPLC

profiles. Journal of Industrial Microbiology Biotechnology. 24:64–70.

Hajji, S., Ghorbel-Bellaaj, O., Younes, I., Jellouli, K., and Nasri, M. 2015. Chitin

extraction from crab shells by Bacillus bacteria. Biological activities of

fermented crab supernatants. International Journal of Biological

Macromolecules. 79: 167-173.

Halder, S.K., Maity, C., Jana, A., Ghosh, K., Das, A., Paul, T., Mohapatra, P.K.D.,

Pati, B.R., and Mondal, K.C. 2014. Chitinases biosynthesis by immobilized

Aeromonas hydrophila SBK1 by prawn shells valorization and application

of enzyme cocktail for fungal protoplast preparation. Journal of Bioscience

and Bioengineering. 117: 170-177.

Halder, S.K., Maity, C., Jana, A., Paul, T., Mohapatra, P.K.D., Pati, B.R., and

Mondal, K.C. 2013. Proficient biodegradation of shrimp shell waste by

Aeromonas hydrophila SBK1 for the concomitant production of antifungal

chitinase and antioxidant chitosaccharides. International Biodeterioration

and Biodegradation. 79: 88-97.

Hammed, A.M., Jaswir, I., Amid, A., Alam, Z, Asiyanbi-H, T.T., and Ramli N.

2013. Enzymatic hydrolysis of plants and algae for extraction of bioactive

compounds. Food Review International. 29: 353-370.

Handayani, A.D., Sutrisno, Indraswati, N., and Ismadji S. 2008. Extraction of

astaxanthin from giant tiger (Panaeus monodon) shrimp waste using palm

oil: Studies of extraction kinetics and thermodynamic. Bioresource

Technology. 99: 4414–4419.

Hao, Z.K., Cai, Y.J., Liao, X.R., Zhang, X.L., Fang, Z.Y., and Zhang, D.B. 2012.

Optimization of nutrition factors on chitinase production from a newly

isolated Chitiolyticbacter meiyuanensis SYBC-H1. Brazilian Journal of

Microbiology. 43: 177-186.

Harf-Monteil, C., Fléche, A.L., and Riegel P. 2004. Aeromonas simiae sp. nov.,

isolated from monkey faeces. International Journal of Systematic and

Evolutionary Microbiology. 54: 481–485.

Harrison, S.T.L. 1991. Bacterial cell disruption: A key unit operation in the recovery

of intracellular products. Biotechnological Advances. 9: 217-240.

Page 39: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

120

Hashimoto, H., Kaneko, Y., Iwaasa, T., and Yokotsuka, T. 1973. Production and

purification of acid protease from the thermophilic fungus Penicillum

duponti K1014. Applied Microbiology. 255: 84-588.

Hazen, T.C. 1979. Ecology of Aeromonas hydrophila in a South Carolina cooling

reservoir. Microbial Ecology. 5:179-195.

Healy, M., Green, M., and Healy, A. 2003. Bioprocessing of marine crustacean

wastes. Acta Biotechnology. 23: 151-160.

Healy, M.G., Romo, C.R., and Bustos, R. 1994. Bioconversion of marine crustacean.

Resources, Conservation and Recycling. 11:139-147.

Helliwell, J.R. 2010. The structural chemistry and structural biology of coloration in

marine crustacean. Crystallography Reviews. 16: 231-242.

Heo, S.J., Jeon, Y.J., Lee, J., Kim, T.H., and Lee, K.W. 2003. Antioxidant effect of

enzymatic hydrolysate from a kelp, Ecklonia cava. Algae. 18: 341-347.

Higuera-Ciapara, I., Félix-Valenzuela, L., and Goycoolea, F.M. 2006. Astaxanthin:

A review of its chemistry and applications. Critical Reviews in Food

Science and Nutrition. 46: 185- 196.

Hiraga, K., Shoua, L., Kitazawaa, M., Takahashia, S., Shimadaba, M., Satoba, R.,

and Oda, K. 1997. Isolation and characterization of chitinase from a flake-

chitin degrading marine bacterium, Aeromonas hydrophila H-2330.

Bioscience, Biotechnology, and Biochemistry. 61: 174-176.

Hirono, I. and Aoki, T. 1991. Nucleotide sequence and expression of an extracellular

haemolysin gene of Aeromonas hydrophila. Microbial Pathogenesis. 11:

189-197.

Holten, K.B. and Onusko, E.M. 2000. Appropriate prescribing of oral beta-lactam

antibiotics. American Family Physician. 62: 611-620.

Hong, M.E., Hwang, S.K., Chang, W.S., Kim, B.W., Lee, J.W., and Sim, S.J.

2015.Enhanced autotrophic astaxanthin production from Haematococcus

pluvialis under high temperatures via heat stress-driven Haber-Weiss

reaction. Applied Microbial and Cell Physiology. 99: 5203-5215.

Hotlin, K., Kuehnle, M., Rehbein, J., Schuler, P., Nicholson, G., and Albert, K.

2009. Determination of astaxanthin and astaxanthin esters in the microalgae

Haematococcus pluvialis by LC-(APCI) MS and characterization of

predominant caotenoid isomers by NMR spectroscopy. Analytical and

Bioanalytical Chemistry. 395: 1613-1622.

Howard, S.P., Garland, W.S., Green, M.J., and Buckley, J.T. 1987. Nucleotide

sequence of the gene for the hole-forming toxin aerolysin of Aeromonas

hydrophila. Journal of Bacteriology. 169: 2869-2871.

Huang, J.C.C. and Starr, M.P. 1973. Effects of calcium and magnesium ions and

host viability on growth of Bdellovibrios. Antonie van Leeuwenhoek. 39:

151-167.

Page 40: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

121

Huang, J.H., Chen, C.J., and Su, Y.C. 1996. Production of chitinolytic enzymes from

a novel species of Aeromonas. Journal of Industrial Microbiology. 17: 89-

95.

Huddleston, J.R., Zak, J.C., and Jeter, R.M. 2006. Antimicrobial susceptibilities of

Aeromonas spp. isolated from environmental sources. Applied and

Environmental Microbiology. 72:7036 –7042.

Hulawale, G. and Sawant, R. 2015. Identification and characterization of

thermostable protease producing organism and partial purification of

protease enzyme. International Journal of Current Microbiology and

Applied Sciences. Special Issue 2: 210-221.

Hussein, G., Sankawa, U., Goto, H., Matsumoto, K., and Watanabe, H. 2006.

Astaxanthin, a carotenoid with potential in human health and nutrition.

Journal of Natural Products. 69: 443-449.

Hussey, M.A., and Smith, A.C (30th September 2005). Gram staining protocols.

American Society for Microbiology. Retrieved from

http://www.microbelibrary.org/component/resource/gram-stain/2886-gram-

stain-protocols.

Ibrahim, H. M., Salama, M. F., and El-Banna, H. A. 1999. Shrimp’s waste:

Chemical composition, nutritional value and utilization. Nahrung. 43: 418-

423.

Iftikhar, T., Niaz, M., Afzal, M., Ul-Haq, I., Rajoka, M.I. 2008. Maximization of

intracellular lipase production in a lipase-overproducing mutant derivative

of Rhizopus oligosporus DGM 31: A kinetic study. Food Technology and

Biotechnology. 46: 402-412.

Igbinosa, I.H., Igumbor, E.U., Aghdasi, F., Tom, M., and Okoh, A.I. 2012.

Emerging Aeromonas Species Infections and Their Significance in Public

Health. The Scientific World Journal. Doi:10.1100/2012/625023.

Irfan, M., Rauf, A., Syed, Q., Nadeem, M., and Baig, S. 2011. Exploitation of

different agro-residues for acid protease production by Rhizopus sp. in Koji

fermentation. International Journal for Agro Veterinary and Medical

Sciences. 5: 43-52.

Islam, M.S., Khan, S., and Tanaka, M. 2004. Waste loading in shrimp and fish

processing effluents: potential source of hazards to the coastal and near

shore environments. Marine Pollution Bulletin. 49: 103-110.

Jana, A., Maity, C., Halder, S.K., Mondal, K.C., Pati, B.R., and Mohapatra, P.K.D.

2012. Tannase production by Penicillum purpurogenum PAF6 in solid state

fermentation of tannin-rich plant residues following OVAT and RSM.

Applied Biochemistry and Biotechnology. 167: 1254-1269.

Janda, J.M. 1985. Biochemical and exoenzymatic properties of Aeromonas species.

Diagnosis Microbiology and Infectious Disease. 3:223–232.

Page 41: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

122

Janda, J.M. and Abbott, S.L. 2007. 16S rRNA gene sequencing for bacterial

identification in the diagnostic laboratory: pluses, perils, and pitfalls.

Journal of Clinical Microbiology. 45: 2761–2764.

Janda, J.M. and Abbott, S.L. 2010. The genus Aeromonas: Taxonomy,

Pathogenicity, and Infection. Clinical Microbiology Reviews.23: 35-73.

Janda, J.M. and Abbott, S.L.1996. Human pathogens. In: B. Austin, M. Altwegg,

P.J. Gosling, and S. Joseph (ed.), The genus Aeromonas (pp. 151-173).

West Sussex, England: John Wiley and Sons Ltd.

Janda, J.M. and Duffey, P.D. 1988. Mesophilic Aeromonads in human disease;

current taxonomy, laboratory identification, and infectious disease

spectrum. Reviews of Infectious Diseases. 10: 980-997.

Jayagruthi, C., Yogeshwari, G., Anbazahan, S.M., Mari, L.S., Arockiaraj, J.,

Mariappan, P., Sudhakar, G.R., Balasundaram, C., and Harikrishnan, R.

2014. Effect of dietary astaxanthin against Aeromonas hydrophila imfection

in common carp, Cyprinus carpio. Fish and Shellfish Immunology. 41: 674-

680.

Jeeva, S., Packia Lekshmi, N.C.J., Raja Brindha, J., and Vasudevan, A. 2013.

Studies on antibiotic subsceptibility of Aeromonas hydrophila isolated from

gold fish (Carassius auratus). International Journal of Current

Microbiology and Applied Sciences. 2: 7-13.

Jholapara, R.J., Mehta, R.S., Bhagwat, A.M., and Sawant, C.S. 2013. Exploring and

optimizing the potential of chitinase production by isolated Bacillus spp.

International Journal of Pharmacy and Pharmaceutical Sciences. 5: 412-

418.

Jo, G.H., Jung, W.J., Kuk, J.H., Oh, K.T., Kim, Y.J., and Park, R.D. 2008. Screening

of protease-producing Serratia marcescens FS-3 and its application to

deproteinization of crab shell waste for chitin extraction. Carbohydrate

Polymers. 74: 504- 508.

Johnson, E. A. and An, G. H. 1991. Astaxanthin from microbial sources. Critical

Reviews Biotechnology. 11: 297–326.

Johnson, E.A. 2003. Phaffia rhodozyma: colorful odyssey. International

Microbiology. 6: 169-174.

Joo, H.S., Kumar, C.G., Park, G.C., Paik, S.R., Chang, C.S. 2004. Bleach-resistant

alkaline protease produced by a Bacillus sp. Isolated from the Korean

polychaete, Periserrula leucophryna. Journal of Process Biochemistry.

39:1441-1447.

Kajiwara, S., Kakizono, T., Saito, T., Kondo, K., Ohtani, T., Nishio, N., Nagai, S.,

and Misawa N. 1995. Isolation and functional identification of a novel

cDNA for astaxanthin biosynthesis from Haematococcus pluvialis, and

astaxanthin synthesis in Escherichia coli. Plant Molecular Biology. 29:

343-352.

Page 42: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

123

Kamath, B.S., Srikanta, B.M., Dharmesh, S.M., Sarada, R., and Ravishankar, G.A.

2008. Ulcer preventive and antioxidative properties of astaxanthin from

Haematococcus pluvialis. European Journal of Pharmacology. 590: 387-

395.

Kanai, K. and Wakabayashi, H. 1984. Purification and some properties of protease

from Aeromonas hydrophila. Bulletin of the Japanese Society of Scientific

Fisheries. 50: 1367-1374.

Kanatani, A., Yoshimoto, T., Kitazono, A., Kokubo, T., and Tsyru, D. 1993. Prolyl

endopeptidase from Aeromonas hydrophila: cloning, sequencing, and

expression of the enzyme gene, and characterization of the expressed

enzyme. Journal of Biochemistry. 113: 790-796.

Kandra, P., Challa, M.M., and Jyothi, H.K.P. 2012. Efficient use of shrimp waste:

present and future trends. Applied Microbiology Biotechnology. 93:17–29.

Kandra, P., Murali Mohan, Ch., and Hemalatha, K.P.J. 2010. Bio-efficiency of

Paediococcus acidilactici ATCC 8042 for recovery of chitin and

carotenoids in the fermentation of shrimp biowaste. International Journal of

ChemTech Research. 2: 1924-1928.

Kang, C.D. and Sim, S.J. 2008. Direct extraction of astaxanthin from Haematococcus

culture using vegetable oils. Biotechnology Letters. 30: 441-444.

Karem, K.L., Foster, J.W., and Bej, A.K. 1994. Adaptive acid tolerance response

(ATR) in Aeromonas hydrophila. Microbiology. 140: 1731-1736.

Karthic, J., Saroj, Y., Naveen, M., Pramod, T., and Siddalingeshwara, K.G. 2014.

Characterization of Aspergillus oryzae protease through submerged

fermentation. International Journal of Current Microbiology and Applied

Sciences. 3: 1023-1028.

Kassem, A.E. and Lasztity, R. 1995. Production of neutral protease by Serratia

marscens using rice bran. Periodica Polytechnica Chemical Engineering.

39: 43-54.

Kawasaki, S., Mizuguchi, K., Sato, M., Kono, T., and Shimizu, H. 2013. A novel

astaxanthin-binding photooxidative stress-inducible aqueous

carotenoprotein from a eukaryotic microalga isolated from Asphalt in

midsummer. Plant and Cell Physiology. 54: 1027-1040.

Keay, L. 1969. Neutral proteases of the genus Bacillus. Biochemical and Biophysical

Research Communications. 36: 257-265.

Kerfeld, C.A., Alexandre, M., and Kirilovsky, D. (2010). The orange carotenoid

protein of cyanobacteria. In J.T. Landrum (Ed.), Carotenoids: Physical,

chemical, and biological functions and properties. Boca Raton, Florida:

CRC Press.

Keyhani, N.O. and Roseman, S. 1999. Physiological aspects of chitin catabolism in

marine bacteria. Biochimica et Biophysica Acta. 1473: 108-122.

Page 43: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

124

Khanafari, A., Marandi, R., and Sanatei, Sh. 2008. Recovery of chitin and chitosan

from shrimp waste by chemical and microbial methods. Iran Journal

Environmental Health Science Engineering. 5:19-24.

Khanafari, A., Saberi, A., Azar, M., Vosooghi, Gh., Jamili, Sh., and Sabbaghzadeh,

B. 2007. Extraction of astaxanthin esters from shrimp waste by chemical

and microbial methods. Iranian Journal of Environmental Health Science

and Engineering. 4: 93-98.

Khanra, K., Choudhuri, I., Panja, S., and Bhattacharyya, N. 2015. Isolation and

identification of an amylase producing trace tolerance bacteria from

industrial waste of haldia, an industrial town of India. International Journal

of Research Studies in Biosciences. 3: 90-96.

Khuri, A.I. and Cornell, J.A. (1987). Response surfaces: Design and analysis.

Marcel Dekker, Inc. New York.

Khuri, A.I. and Mukhopadhyay, S. 2010. Response surface methodology. Wires

Computational Statistics. 2: 128-149.

Kidd, P. 2011. Astaxanthin, cell membrane nutrient with diverse clinical benefits

and anti-aging potential. Alternative Medicine Review. 16: 355-364.

Kidd, S.P. and Pemberton, J.M. 2002. The identification of the transcriptional

regulator CRP in Aeromonas hydrophila JMP636 and its involvement in

amylase production and the ‘acidic toxicity’ effect. Journal of Applied

Microbiology. 93: 787–793.

Kim, S.J. 1985. Effect of heavy metals on natural populations of bacteria from

surface microlayers and subsurface water. Marine Ecology Progress Series.

26: 203-206.

Kingombe, C.I.B., Huys, G., Tonolla, M., Albert, M.J., Swings, J., Peduzzi, R. and

Jemmi, T. 1999. PCR detection, characterization, and distribution of

virulence genes in Aeromonas spp. Applied Environmental Microbiology.

65: 5293–5302.

Kirov, S. M. (1997). Aeromonas and Plesiomonas species. In M. P. Doyle, L. R.

Beuchat, and T. J. Montville (Eds.), Food microbiology, fundamentals and

frontiers (pp. 265-287). Washington D.C., USA: ASM Press.

Kirov, S. M., Castrisios, M., and Shaw, J. G. 2004. Aeromonas flagella (polar and

lateral) are enterocyte adhesins that contribute to biofilm formation on

surfaces. Infection and Immunity. 72:1939-1945.

Kirov, S.M. and Brodribb, F. 1993. Exotoxin production by Aeromonas spp. In

foods. Letters in Applied Microbiology. 17: 208-211.

Ko, W.C. Aeromonas species. In: V.L. Yu, R. Weber, D. Raoult,

(eds.) Antimicrobial therapy and vaccines (pp 45-53). New York: Apple

Tree Productions.

Kobayashi, M. And Sakamoto, Y. 1999. Singlet oxygen quenching ability of

astaxanthin esters from the green alga Haematococcus pluvialis.

Biotechnology Letters. 21: 265–269.

Page 44: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

125

Kobayashi, M., Kurimura, Y., Kakizono, T., Nishio, N., and Tsuji, T. 1997.

Morphological changes in the life cycle of the green alga Haematococcus

pluvialis. Journal of Fermentation Bioengineering. 84: 94-97.

Kolla, J.P., Narayana, and Vijayalakshmi, M. 2009. Chitinase production by

Streptomyces sp. ANU 6277. Brazilian Journal of Microbiology. 40: 725-

733.

Kooij, D.V.D., and Hijnen, W.A.M. 1988. Nutritional Versatility and Growth

Kinetics of an Aeromonas hydrophila Strain Isolated from Drinking Water.

Applied and Environmental Microbiology. 54: 2842-2851.

Kuddus, S.M. and Ahmad, R.I.Z. 2013. Isolation of novel chitinolytic bacteria and

production optimization of extracellular chitinase. Journal of Genetic

Engineering and Biotechnology. 11: 39-46.

Kumar, M., Jain, A.K., Ghosh, M., and Ganguli, A. 2012. Potential application of an

anti-aeromonas bacteriocin of Lactococcus lactis spp lactis in the

preservation of vegetable salad. Journal of Food Science. 32: 369-378.

Kumar, S.S., Sangeeta, R., Soumya, S., Ranjan, R.P., Bidyut, B., Kumar, D.M.P.

2014. Characterizing novel thermophilic amylase producing bacteria from

taptapani hot spring, Odisha, India. Jundishapur. Journal of Microbiology.

7: 1-7.

Latscha, T. 1989. The role of astaxanthin in shrimp pigmentation. Advances In

Tropical Aquaculture. 9: 319-325.

Latscha, T. 1990. Carotenoids-their nature and significance in animal feeds. In: .F

Hoffman-La Roche Ltd. Animal Nutrition and Health, pp: 110. Basel,

Switzerland.

Lee, A.K., Lewis, D.M., and Ashman, P.J. 2012. Disruption of microalgal cells for

the extraction of lipids for biofuels: Processes and specific energy

requirements. Biomass and Bioenergy. 46: 89-101.

Lee, S.H., Roh, S.K., Park, K.H., and Yoon, R.K. 1999. Effective extraction of

astaxanthin pigment from shrimp using proteolytic enzymes. Biotechnology

and Bioprocess Engineering. 4: 199-204.

Lee, W.S. and Puthucheary, S.D. 2001. Retrospective study of Aeromonas infection

in a Malaysian urban area: A 10-year experience. Singapore Medical

Journal. 42: 57-60.

Leftwick, A. P. and Weedo, B. C. L. 1967. Total synthesis of astaxanthin and

hydroxyechinenone. Chemical Communications. 1: 49-50.

Li, J., Zhu, D., Niu, J., Shen, S., and Wang, G. 2011a. An economic assessment of

astaxanthin production by large scale cultivation of Haematococcus

pluvialis. Biotechnology Advances. 29: 568-574.

Page 45: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

126

Li, X., Xu, X., Albanob, D.R., and You, T.Y. 2011b. Optimization using central

composite design for antihistamines separation by non-aqueous capillary

electrophoresis with electrochemical and electrochemiluminescence

detections. Analyst. 136: 5294-5301.

Liang, T.W., Lin, J.J., Yen, Y.H., Wang, C.L., and Wang, S.L. 2006. Purification

and characterization of a protease extracellualrly produced by Monascus

purpureus CCRC31499 in a shrimp and crab shell powder medium. Enzyme

and Microbial Technology. 38: 74-80.

Liao, I.C. and Chien, Y.H. 1994. Culture of kuruma prawn (Penaeus japonicas Bate)

in Asia. World Aquaculture. 25: 18-33.

Lien, T.S., Yu, S.T., Wu, S.T., Too, J.R. 2007. Induction and purification of a

thermophilic chitinase produced by Aeromonas sp. DYU-Too7 using

glucosamine. Biotechnology and Bioprocess Engineering. 12: 610-617.

Liu, P.C., Chuang, W.H., Tu, C.C., and Lee, K.K. 2010. Purification of a toxic

cysteine protease produced by pathogenic Aeromonas hydrophila isolated

from rainbow trout. Journal of Basic Microbiology. 50: 538-547.

Liu, X. and Osawa, T. 2007. Cis astaxanthin and especially 9-cis astaxanthin

exhibits a higher antioxidant activity in vitro compared to the all-trans

isomer. Biochemical and Biophysical Research Communications. 357: 187-

193.

Liu, Y. (2007). Investigation of major biochemical factors for improved carotenoid

(astaxanthin) production by Xanthophyllomyces dendrorhous. (Doctoral

dissertation). Retrieved from

http://ira.lib.polyu.edu.hk/bitstream/10397/2173/2/b20940403.pdf

Lockwood, S.F., O’Malley, S. and Mosher, G.L. 2003. Improved aqueous solubility

of crystalline astaxanthin (3,3'-dihydroxy-beta, beta-carotene-4,4'-dione) by

Captisol (sulfobutyl ether beta-cyclodextrin). Journal of Pharmaceutical

Science. 92: 922-926.

Lorenz, R.T. 1998a. A Review of the Carotenoid, Astaxanthin, as a Pigment and

Vitamin Source for Cultured Penaeus Prawn. NatuRose Technical Bulletin.

51: 1-7.

Lorenz, R.T. 1998b. Thin-Layer chromatography (TLC) system for naturose

carotenoids. NatuRose Technical Bulletin. 003:1-3.

Lotrakul, P. and Dharmsthiti, S. 1997. Lipase production by Aeromonas sobria

LP004 in a medium containing whey and soybean meal. World Journal of

Microbiology and Biotechnology. 13: 163-166.

Lu, M., Zhang, Y., Zhao, C., Zhou, P., and Yu, L. 2010. Analysis and identification

of astaxanthin and its carotenoid precursors from Xanthophyllomyces

dendrorhous by high-performance liquid chromatography. Zeitschrift

Naturforschun. C. 65: 489-494.

Page 46: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

127

Mahapatra, S. and Banerjee, D. 2013. Optimization of a bioactive exopolysaccharide

production from endophytic Fusarium solani SD5. Carbohydrate Polymer.

97: 627-634.

Mahdi, B.A., Bhattacharya, A., and Gupta. A. 2012. Enhanced lipase production

from Aeromonas sp. S1 using Sal deoiled seed cake as novel natural

substrate for potential application in dairy wastewater treatment. Journal of

Chemical Technology and Biotechnology. 87: 418–426.

Mahmoud, N.S., Ghaly, A.E., and Arab, F. 2007. Unconventional approach for

demineralization of deproteinized crustacean shells for chitin production.

American Journal of Biochemistry and Biotechnology. 3:1-9.

Malaysian Meteorological Department

http://www.met.gov.my/index.php?option=com_content&task=view&id=8

46&Itemid=1586 (accessed 13 July 2015, 4.36 pm).

Manivannan, S., and Karthiresan, K. 2007. Alkaline protease production by

Penicillium fellutanum isolated from mangrove sediment. International

Journal of Biological Chemistry. 1: 98-103.

Martin-Carnahan, A., and Joseph, S.W. 2005. I. Genus, Aeromonas Stanier 1943. In:

D.J. Brenner, N.R. Krieg, and J.T. Staley (Eds.), Bergey’s Manual of

Systematic Bacteriology, vol. 2, (2nd ed) (pp. 557-558). Berlin: Springer.

Martins, S.I.F.S., Jongen, W.M.F., and Boekel, M.A.J.S. 2001. A review of Maillard

reaction in food and implications to kinetic modeling. Trends in Food

Science and Technology. 11: 364-373.

Mathew J. (1999), Microbial Protease- isolation, purification and characterization

(Doctoral dissertation). Retrieved from http://hdl.handle.net/10603/256

Mazzucotelli, C. A., Agüero, M. V., Moreira, M. d. R. and Ansorena, M. R. (2015),

Optimization of medium components and physicochemical parameters to

simultaneously enhance microbial growth and production of lypolitic

enzymes by Stenotrophomonas sp. Biotechnology and Applied

Biochemistry. Doi: 10.1002/bab.1378

McMahon, M.A.S. 2000. The expression of proteinases and haemolysins by

Aeromonas hydrophila under modified atmospheres. Journal of Applied

Microbiology. 89: 415–422.

McMillian, J.R., Watson, I.A., Ali, M., and Jaafar, W. 2013. Evaluation and

comparison of algal cell disruption methods: Microwave, waterbath,

blender, ultrasonic and laser treatment. Applied Energy. 103: 128-134.

Meena, G.S., Kumar, N., Majumdar, G.C., Banerjee, R., Meena, P.K., and Yadav, V.

2014. Growth characteristics modeling of Lactobacillus acidophilus using

RSM and ANN. Brazilian Archives of Biology and Technology. 57: 15-22.

Mendes-Pinto, M.M., Raposo, M.F.J., Bowen, J., Young, A.J., and Morais, R. 2001.

Evaluation of different cell disruption processes on encysted cells of

Haematococcus pluvialis: effects on astaxanthin recovery and implications

for bio-availability. Journal of Applied Phycology 13: 19–24.

Page 47: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

128

Merino, S. and Tomás, J. M. (2009). Lateral flagella systems in Pili and Flagella:

Current Research and Future Trends. Norfolk, UK: Caister Academic

Press.

Merino, S., Rubires, X., Knochel, S., and Tomás, J.M. 1995. Emerging pathogens:

Aeromonas spp. International Journal of Food Microbiology. 28: 157-168.

Messi, P., Guerrieri, E., and Bondi, M. 2002. Survival of Aeromonas hydrophila in

an artificial mineral water microcosm. Water Research. 36: 3410-3415.

Messi, P., Guerrieri, E., and Bondi, M. 2003. Bacteriocin-like substance (BLS)

production in Aeromonas hydrophila water isolates. FEMS Microbiology

Letters. 220: 121–125.

Miao, F.P., Lu, D.Y, Li, Y.G., and Zeng, M.T. 2006. Characterization of astaxanthin

esters in Haematococcus pluvialis by liquid chromatography-atmospheric

pressure chemical ioization mass spectrometry. Analytical Biochemistry.

352: 176-181.

Miao, F.P., Lu, D.Y, Zhang, C.W., Zuo, J.C., Geng, Y.H., Hu, H.J., and Li, Y.G.

2008. The synthesis of astaxanthin esters, independent of the formation of

cysts, highly correlates with the synthesis of fatty acids in Haematococcus

pluvialis. Science in China Series C: Life Sciences. 51: 1094-1100.

Michelon, M., Matos de Borba, T.D., Silva Rafael, R.D., Burkert, C.A.V., and

Medeiros Burket, J.F.D. 2012. Extraction of carotenoids from Phaffia

rhodozyma: A comparison between different techniques of cell disruption.

Food Science Biotechnology. 21: 1-8.

Middelberg, A.P.J. 1995. Process-scale disruption of microorganisms.

Biotechnology Advances. 13: 491-551.

Miñana-Galbis, D., Farfán, M., Fusté, M.C., and Lorén, J. G. 2004. Aeromonas

molluscorum sp. nov., isolated from bivalve molluscs. International

Journal of Systematic and Evolutionary Microbiology. 54: 2073–2078.

Misawa, N. and Shimada, H. 1998. Metabolic engineering for the production of

carotenoids in non-carotenogenic bacteria and yeasts. Journal of

Biotechnology. 59: 196-181.

Mizani, A.M. and Aminlari, B.M. (2007). A new process for deproteinization of

chitin from shrimp head waste. In Proceedings of European Congress of

Chemical Engineering, 16-20 September (pp. 1-8). Copenhagen, Denmark.

Monks, L.M., Rigo, A., Mazutti, M.A., Vladimir Oliveira, J., and Valduga, E. 2013.

Use of chemical, enzymatic and ultrasound-assisted methods for cell

disruption to obtain carotenoids. Biocatalysis and Agricultural

Biotechnology. 2: 165-169.

Moretti, V.M., Mentasti, T., Bellagamba,F., Luzzana, U., Caprino, F., Turchini,

G.M., Giani, I., and Valfre, F. 2006. Determination of astaxanthin

stereoisomers and colour attributes in flesh of rainbow trout (Oncorhynchus

mykiss) as a tool to distinguish the dietary pigmentation source. Food

Additives Contaminants. 23: 1056-1063.

Page 48: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

129

Morganti, P. and Chen, H.D. 2011. Skin cell management: the NICE approach.

Personal Care. 4: 29–36.

Morganti, P., Morganti, G., and Morganti, A. 2011. Transforming nanostructured

chitin from crustacean waste into beneficial health products: A must for our

society. Nanotechnology, Science and Applications. 4: 123–129.

Moro, E.M.P., Weiss, R.D.N, Friedrich, R.S, and Nunes, M.P. 1997 Bacteriocin-like

Substance of Aeromonas hydrophila. Memórias do Instituto Oswaldo Cruz.

92: 115–116.

Morshedi, A. and Akbarian, M. 2014. Application of response surface methodology:

Design of experiments and optimization: A mini review. Indian Journal of

Fundamental and Applied Life Sciences. 4: 2434-2439.

Mostafa, E.S.E., Saad, M.M., Awad, H.M., Selim, M.H., and Hassan, H.M. 2012.

Optimization conditions of extracellular proteases production from a newly

isolated Streptomyces pseudogrisiolus NRC-15. E-Journal of Chemistry. 9:

949-961.

Mukherjee, A.K., Adhikari, H., and Rai, S.K. 2008. Production of alkaline protease

by a thermophilic Bacillus subtilis under solid strate fermentation (SSF)

condition using Imperate cylindrica grass and potato peel as low cost

medium: Characterization and application of enzyme in detergent

formulation. Biochemical Engineering Journal. 39: 353-361

Mukhtar, H., and Haq, I.U. 2008. Production of alkaline protease by Bacillus subtilis

and its application as a depilating agent in leather processing. Pakistan

Journal of Botany. 40: 1673-1679.

Myers, R. H., Montgomery, D. C., and Anderson-Cook, C. M. (2009). Response

Surface Methodology: Process and Product Optimization Using Designed

Experiments (3rd ed). Wiley, New York, USA.

Myers, R.H. and Montgomery, D.C. (2002). Response Surface Methodology. New

York: John Wiley & Sons.

Nadeem M., Qazi J.I.,Baig S., and Syed Q.U.A. 2008. Effect of medium

composition on commercially important alkaline protease production by

Bacillus licheniformis N-2. Food Technology and Biotechnology. 46:388-

394.

Nakajima, Y., Inokuchi, Y., Shimazawa, M., Otsubo, K., Ishibashi, T., and Hara, H.

2008. Astaxanthin, a dietary carotenoid, protects retinal cells against

oxidative stress in-vitro and in mice in-vivo. Journal of Pharmacy and

Pharmacology. 60: 1365-1374.

Namdari, H. and Cabelli, V.J. 1989. The suicide phenomenon in motile

Aeromonads. Applied and Environmental Microbiology. 55: 543-547.

Nampoothiri, K. M., Szakacs, G., and Pandey, A. 2005. Microbial synthesis of

chitinase in solid cultures and its potential as a biocontrol agent against

phytopathogenic fungus Colletotrichum gloeosporioides. Applied

Biochemistry and Biotechnology. 127: 1-15.

Page 49: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

130

Nandakumar, M.P., Tocaj, A., and Mattiasson, B. 1999. Use of a micro-expanded

bed containing immobilized lysozyme for cell disruption in flow injection

analysis. Bioseparation. 8: 247-254.

Nawani, N. N., Prakash, D. and Kapadnis, B.P. 2010. Extraction, purification and

characterization of an antioxidant from marine waste using protease and

chitinase cocktail. World Journal of Microbiology and Biotechnology. 8:

1509-1517.

Negi, S. and Banerjee, R. 2006. Optimization of amylase and protease production

from Aspergillus awamori in single bioreactor through EVOP factorial

design technique. Food Technology and Biotechnology. 44: 257–261.

Negro, J.J. and Garrido-Fernandez, J. 2000. Astaxanthin is the major carotenoid in

tissues of white storks (Ciconia ciconia) feeding on introduced crayfish

(Procambarus larkia). Comparative Biochemistry and Physiology Part B.

126: 347–352.

Neyts, K., Huys, G., Uyttendaele, M., Swings, J., and Debevere, J. 2000. Incidence

and identification of mesophilic Aeromonas spp. from retail foods. Letters

in Applied Microbiology. 31: 359-363.

Nguyen, K.D. 2013. Astaxanthin: A comparative case of synthetic vs. natural

production. Chemical and Biomolecular Engineering Publications and

Other Works. Retrieved from

http://trace.tennessee.edu/utk_chembiopubs/94

Ni, H., Chen, Q., He, G., Wu, G., and Yang, Y. 2011. Optimization of acidic

extraction of astaxanthin from Phaffia rhodozyma. Journal of Zhejiang

University SCIENCE B. 9: 51-59.

Nielsen, M.E., Høi, L., Schmidt, A.S., Qian, D., Shimada, T., Shen, J.Y., and

Larsen, J.L. 2001. Is Aeromonas hydrophila the dominant motile

Aeromonas species that causes disease outbreaks in aquaculture production

in the Zhejiang Province of China? Diseases of Aquatic Organisms. 46: 23-

29.

Nisha, N.S. and Divakaran, J. 2014. Optimization parameters for alkaline protease

production using bacterial isolates from different coastal regions of Tamil

Nadu, India. International Journal of Current Microbiology and Applied

Sciences. 3: 500-505.

Nishikawa, Y., & Kishi, T. 1987. A modification of bile salts brilliant green agar for

isolation of motile Aeromonas spp. from food and environmental

specimens. Journal of Epidemiology and Infection. 98: 331–336.

Niyonzima, F.N. and More, S.S. 2014. Concomitant production of detergent

compatible enzymes by Bacillus flexus XJU-1. Brazilian Journal of

Microbiology. 45: 903-910.

North, A. 2002. Why do lobsters turn pink when they are cooked? Trends in

Biotechnology. 20: 414-415

Page 50: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

131

Nunez-Gastelum, J.A., Sánchez-Machado, D.I., López-Cervantes, J., Rodríguez-

Núñez, J.R., Correa-Murrieta, Ma. A., Sánchez-Duarte, R.G., and Campas-

Baypoli, O.N. 2015. Astaxanthin and its esters in pigmented oil from

fermented shrimp byproducts. Journal of Aquatic Food Product

Technology. DOI:10.1080/10498850.2013.851756

Oehlert, G.W. (2010). A first course in design and analysis of experiments. New

York: W.H. Freeman.

Oh, T.K., Kim, Y.J., Nguyen, V.N., Jung, W.J., and Park, D.R. 2007.

Demineralization of crab waste by Pseudomonas aeruginosa F722. Process

Biochemistry. 42: 1069-1074.

Oh, Y.S., Shih, L.I., Tzeng, Y.M., and Wang, S.L. 2000. Protease produced by

Pseudomonas aeruginosa K-187 and its application in the deproteinization

of shrimp and crab shell wastes. Enzyme and Microbial Technology. 27:3-

10.

Pace, C.N., Treviño, S., Prabhakaran, E., and Scholtz, J.M. 2004. Protein structure,

stability and solubility in water and other solvents. Philosophical

transactions of the Royal Society of London, Series B, Biological Sciences.

29: 1225-12234.

Pachanawan, A., Phumkhachom, P., and Rattanachaikunsopon, P. 2008. Potential of

Psidium guajava supplemented fish diests in controlling Aeromonas

hydrophila infection in tilapia (Oreochromis niloticus). Journal of

Bioscience and Bioengineeering. 106: 419-424.

Pacheco, N., Gamica-Gonzalez, M., Ramirez-Hermandez, J.Y., Flores-Albino, B.,

Gimeno, M., Barzana, E., and Shirai, K. 2009. Effect of temperature on

chitin and astaxanthin recoveries from shrimp waste using lactic acid

bacteria. Bioresource Technology. 100: 2849-2854.

Paibulkichakul, C., Piyatiratitivorakul, S., Sorgelos, P., and Menasveta, P. 2008.

Improved maturation of pond-reared, black tiger shrimp (Penaeus

monodon) using fish oil and astaxanthin feed supplements. Aquaculture.

282: 83-89.

Palsaniya, P., Mishra, R., Beejawat, N., Sethi, S., and Gupta, B.L. 2012.

Optimization of alkaline protease production from bacteria isolated from

soil. Journal of Microbiology and Biotechnology Research. 6: 858-865.

Palumbo, S.A., Morgan, D.R., and Buchanan, R.L. 1985. Influence of temperature,

NaCl, and pH on the growth of Aeromonas hydrophila. Journal of Food

Science. 54: 1417-1421.

Pan, J.L., Wang, M.W., Chen, C.Y., and Chang, J.S. 2012. Extraction of astaxanthin

from Haematococcus pluvialis by supercritical carbon dioxide fluid with

ethanol modifier. Engineering in Life Sciences. 12: 638-647.

Parker, J.L. and Shaw, J.G. 2011. Aeromonas spp. Clinical microbiology and

disease. Journal of Infection. 62: 109-118.

Page 51: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

132

Patel, J. B. 2001. 16S rRNA gene sequencing for bacterial pathogen identification in

the clinical laboratory. Molecular Diagnostics. 6: 313–321.

Patil, R.S., Ghormade, V., and Deshpande, M.V. 2000. Chitinolytic enzymes: an

exploration. Enzyme and Microbial Technology. 26:473-483.

Paul, T., Halder, S.K., Das, A., Ghosh, K., Mandal, A., Payra, P., Barman, P.,

Mohapatra, P.K.D., Pati, B.K., and Mondal, K.C. 2015. Production of chitin

and bioactive materials from Black tiger shrimp (Penaeus monodon) shell

waste by the treatment of bacterial protease cocktail. 3 Biotech. 5: 483-493.

Pawlisyzn, J. 1993. Kinetic Model of Supercritical Fluid Extraction. Journal of

Chromatographic Science. 31: 31-37.

Pemberton, J.M, Kidd, S.P. and Schmidt, R. 1997. Secreted enzymes of Aeromonas.

FEMS Microbiology Letters. 152: 1-10.

Pepper, I.L., Greba, C.P., and Gentry T.J. 2015. Environmental Biology (3rd ed.).

USA: Academic press.

Petti, C. A. 2007. Detection and identification of microorganisms by gene

amplification and sequencing. Clinical Infectious Disease. 44:1108–1114.

Pettibone, G.W., Mear, J.P., and Sampsell, B.M., 1996. Incidence of antibiotic and

metal resistance and plasmid carriage in Aeromonas isolated from brown

bullhead (Ictalurus nebulosus). Letters in Applied Microbiology. 23: 234–

240.

Pidiyar, V., Kaznowski, A., Narayan, N. B., Patole M., and Shouche, Y.S. 2002.

Aeromonas culicicola sp. nov., from the midgut of Culex quinquefasciatus.

International Journal of Systematic and Evolutionary Microbiology. 52:

1723–1728.

Pollack, M.A. and Linder, M. 1942. Glutamine and glutamic acid as growth factors

for lactic acid bacteria. Journal of Biological Chemistry. 143: 655-661.

Polydee, E and Chaiyanan, S. 2014. Production of high viscosity chitosan from

biologically purified chitin isolated by microbial fermentation and

deproteinization. International Journal of Polymer Science.

Doi:10.1155/2014/162173.

Popoff, M., and Lallier, R. (1984). Biochemical and serological characteristics of

Aeromonas. In T. Bergan (Ed), Methods in Microbiology (pp. 127-145).

Academic Press, New York, NY, USA.

Popoff, M.Y., Coynault, C., Kiredjian, M., and Lemelin, M. 1981. Polynucleotide

sequence relatedness among motile Aeromonas species. Current

Microbiology. 5:109.

Prameela, K., Murali, M.C., and Hemalatha, K.P.J. 2012. Efficient use of shrimp

waste: present and future trends. Applied Microbiology and Biotechnology.

93: 17-29.

Page 52: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

133

Pu, J., David Bankston, J., and Sathivel, S. 2010. Extraction of shrimp astaxanthin

with flaxseed oil: Effects on lipid oxidation and astaxanthin degradation

rates. Biosystems Engineering. 107: 364-371.

Radu, S., Ahmad, N., Ling, F.H., and Reezal, A. 1997. Prevalence and resistance to

antibiotics for Aeromonas species from retail fish in Malaysia.

International Journal of Food Microbiology. 81: 261-266.

Raghunathan, D. 2013. Production of microbial cellulose from the new bacterial

strain isolated from temple wash waters. International Journal of Current

Microbiology and Applied Sciences. 2: 275-290.

Rahman, R.N.Z.A., Razak, C.E., Ampon, K., Basri, M., Yunus, W.M.Z.W., Salleh,

A.B. 1994. Purification and characterization of a heat-stable alkaline

protease from Bacillus stearothermophilus F1. Applied Microbiology and

Biotechnology. 40:822-827.

Rahman, T., Akanda, M.M.R., Rahman, M.M., and Chowdhury, M.B.R. 2009.

Evaluation of the efficacies of selected antibiotics and medicinal plants on

common bacterial fish pathogens. Journal of the Bangladesh Agricultural

University. 7:163-168.

Rai, S.K. and Mukherjee, A.K. 2010. Statistical optimization of production,

purification and industrial application of a laundry detergent and organic

solvent-stable substilin-like serine protease (Alzwiprase) from Bacillus

subtilis DM-04. Biochemical Engineering Journal. 48: 173-180.

Raimbault, M. 1998. General and microbiological aspects of solid substrate

fermentation. Process Biotechnology. 1: 1-22.

Ranga Rao, A. (2011). Production of astaxanthin from cultured green alga

Haematococcus pluvialis and its biological activities (Doctoral

dissertation). Retrieved from http://ir.cftri.com/10754/

Rao, A.R., Sarada, R., and Ravishankar, G.A. 2007. Stabilization of astaxanthin in

edible oils and its use as an antioxidant. Journal of the Science of Food and

Agriculture. 87: 957-965.

Rao, M.B., Tanksale, A.M., Ghatge, M.S., And Deshpande, V.V. 1998. Molecular

and biotechnological aspects of microbial proteases. Microbiology And

Molecular Biology Reviews. 62: 597–635.

Rao, M.S., Guyot, J.P., Pintado, J., and Stevens, W.F. 2002. Improved conditions for

lactobacillus fermentation of shrimp waste into chitin. In: K. Scchiva, S.

Chandrkrachang, P. Methacanon, and M.G. Peter (Eds.), Advance in chitin

science, (pp. 40-44). Bangkok, Elsevier.

Ravi Kumar, M.N.V. 2000. A review of chitin and chitosan applications. Reactive

and Functional Polymers. 46:1-27.

Reddy L.V.A., Wee, Y.J., Yun, J.S., and Ryu, H.W. 2008. Optimization of alkaline

protease production by batch culture of Bacillus sp. RKY3 through

Plackett–Burman and response surface methodological approaches.

Bioresource Technology. 99: 2242–2249.

Page 53: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

134

Reissig, J.L., Strominger, J.L., and Leloir, L.F. 1955. A modified colorimetric

method for the estimation of N-acetylamino sugars. Journal Biological

Chemistry. 217: 959-966.

Ren, X., Yu, D., Yu, L., Gao, G., Han, S., and Feng, Y. 2007. A new study of cell

disruption to release recombinant thermostable enzyme from Escherichia

coli by thermolysis. Journal of Biotechnology. 129: 668-673.

Rezanka, T., Nedbalova, L., Kolouchova, I., and Sigler K. 2013. LC-MS/APCI

identification of glucoside esters and diesters of astaxanthin from snow

algae Chlamydomonas nivalis including their optical stereoisomers.

Phytochemistry. 88: 34-42.

Rinaudo, M. 2006. Chitin and chitosan: Properties and applications. Progress in

Polymer Science. 31:603-632.

Rippey, S.R., Troy, M.A., and Cabelli, V.J. 1994. Growth kinetics of Aeromonas

hydrophila in freshwaters supplemented with various organic and inorganic

nutrients. World Journal of Microbiology & Biotechnology. 10: 159-164.

Roberts, G.A.F, 2008. Thirty years of progress in chitin and chitosan. Progress on

Chemistry and Application of Chitin and Its Derivatives.13: 7-15.

Rødde, R.H., Einbu, A., and Vårum, K.M. 2008. A seasonal study of the chemical

composition and chitin quality of shrimp shells obtained from northern

shrimp (Pandalus borealis). Carbohydrate Polymers. 71: 388–393.

Romero, J., Feijoo, C.G., and Navarrete, P. (2012). Antibiotics in aquaculture- use,

abuse and alternatives, health and environment in aquaculture. In: E.D.

Carvalho, R.J. Silva, and G.S. David (Eds.), Health and environment in

aquaculture (pp. 159-198). China: InTech.

Rossolini, G.M., Condemi, M.A., Pantanella, F., Docquier, J.D., Amicosante, G.,

and Thaller, M.C. 2001. Metallo-β-lactamase producers in environmental

microbiota: New molecular class b enzyme in Janthinobacterium lividum.

Antimicrobial Agents and Chemotherapy. 45: 837-844.

Rouf, M. A., Weber, P.L., and Rigney, M.M. 1971. Amino Acid Requirements of

Aeromonas. Applied Microbiology. 21: 371-373.

Sachindra, N.M. (2003). Studies on some crustaceans of tropical waters with special

reference to pigments (Doctoral dissertation). Retrieved from

http://ir.cftri.com/150/1/1868_Sachindra.pdf

Sachindra, N.M. and Mahendrakar, N.S. 2005. Process optimization for extraction of

carotenoids from shrimp waste with vegetable oils. Bioresource

Technology. 96: 1195-1200.

Sachindra, N.M., Bhaskar, N., and Mahendrakar, N.S. 2005. Carotenoids in crabs

from marine and fresh waters of India. Lebensmittle-Wissenschaft und-

Tecnologie. 38: 221–225.

Page 54: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

135

Sachindra, N.M., Bhaskar, N., and Mahendrakar, N.S. 2006. Recovery of

carotenoids from shrimp waste in organic solvents. Waste Management. 26:

1092-1098.

Sachindra, N.M., Bhaskar, N., Siddegowda, G.S., Sathisha, A.D., and Suresh, P.V.

2007. Recovery of carotenoids from ensilaged shrimp waste. Bioresource

Technology. 98: 1642–1646.

Sahena, F., Zaidul, I.S.M., Jinap, S., Saari, N., Jahurul, H.A., Abbas, K.A., and

Norulaini, N.A. 2009. PUFAS in fish: extraction, fractionation, importance

in health. Comprehensive Reviews in Food Science and Food Safety. 8: 59–

74.

Saima, M.K. and Roohi, I.Z.A. 2013. Isolation of novel chitinolytic bacteria and

production optimization of extracellular chitinase. Journal of Genetic

Engineering and Biotechnology. 11: 39–46.

Sakai, D.K. 1985. Significance of extracellular protease for growth of a

heterotrophic bacterium, Aeromonas salmonicida. Applied Environmental

Microbiology. 50: 1031-1037.

Samarashinge, N., Fernando, S., lacey, R., and Faulkner, W.B. 2012. Algal cell

rupture using high pressure homogenization as a prelude to oil extraction.

Renewable Energy. 48: 300- 308.

Samie, N., Noghabi, K.A., Gharegozloo, Z., Zahiri, H.S., Ahmadian, G., Sharafi, H.,

Behrozi, R., and Vali, H. 2012. Psychrophilic α-amylase from Aeromonas

veronii NS07 isolated from farm soils. Process Biochemistry. 9: 1381-1387.

Sánchez-Camargo, A.P., Meireles, M.A.A., Lopes, B.L.F., and Cabral, F.A.C. 2011.

Proximate composition and extraction of carotenoids and lipids from

Brazilian redspotted shrimp waste (Farfantepenaeus paulensis). Journal of

Food Engineering. 102: 87–93.

Sánchez-Céspedes, J., Blaco, M.D., Marti, S., Alba, V., Alcalde, E., Esteve, C and

Vila, J. 2008. Plasmid-mediated QnrS2 determinant from a clinical

Aeromonas veronii isolate. Antimicrobial Agents and Chemotherapy. 52:

2990 –2991.

Sankaralingam, S., Ramasubburayan, R., and Palavesam, A. 2012. Optimization of

culture conditions for the production of an extracellular alkaline protease

from Vibrio mimicus. International Conference on Environment, Energy

and Biotechnology. 33: 259-264.

Sarada, R., Vidhyavathi, R., Usha, D., And Ravishankar, G. A. 2006. An efficient

method for extraction of astaxanthin from green alga Haematococcus

pluvialis. Journal of Agricultural Food Chemistry. 54: 7585−7588.

Sarker, P.K., Talukdar, S.A., Deb, P., Sayem, S.M.A., and Mohsina, K. 2013.

Optimization and partial characterization of culture conditions for the

production of alkaline protease from Bacillus licheniformis P003.

SpringerPlus. 2: 1-11.

Page 55: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

136

Sautour, M., Mary, P., Chihib, N.E., and Hornez, J.P. 2003. The effects of

temperature, water activity and pH on the growth of Aeromonas hydrophila

and subsequent survival in microcosm water. Journal of Applied

Microbiology. 95: 807-813.

Saxena, R. and Singh, R. 2010. Statistical optimization of conditions for protease

production from Bacillus sp. Acta Biologica Szegediensis. 54:135-141

Schmidt, I., Schewe, H., Gassel, S., Jin, C., Buckingham, J., Hu¨ mbelin, M.,

Sandmann, G., and Schrader, J. 2011. Biotechnological production of

astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous.

Applied Microbiology and Biotechnology. 89: 555–571.

Scopes, R.K. 1987. Protein purification: principles and practice (2nd ed.). New

York, NY: Springer-Verlag.

Seabra, L.M.A.J and Pedrosa, L.F.C. 2010. Astaxanthin: structural and functional

aspects. Revista Nutricao. 23: 1041-1050

Seki, T., Sueki, H., Kohno, H., Suganuma, K., and Yamashita, E. 2001. Effects of

astaxanthin from Haematococcus pluvialis on human skin. Fragrance

Journal. 12: 98-103.

Sen, S., Veeranki, V.D., and Mandal, B. 2009. Effect of physical parameters, carbon

and nitrogen sources on the production of alkaline protease from a newly

isolated Bacillus pseudofirmus SVB1. Annals of Microbiology. 59: 531-

538.

Senol, M., Nadaroglu, H., Dikbas, N., and Kotan, R. 2014. Purification of chitinase

enzymes from Bacillus subtilis bacteria TV-125, investigation of kinetic

properties and antifungal activity against Fusarium culmorum. Annals of

Clinical Microbiology and Antimicrobials. Doi:10.1186/s12941-014-0035-

3.

Sevinc, N. and Demirkan, E. 2011. Production of protease by Bacillus sp. N-40

isolated from soil and its enzymatic properties. Journal of Biodiversity and

Environmental Sciences. 5: 95-103.

Sha, J., Kozlova, E.V., and Chopra, A.K. 2002. Role of various enterotoxins in

Aeromonas hydrophila-induced gastroenteritis: Generation of enterotoxin

gene-deficient mutants by marker-exchange mutagenesis and evaluation of

their enterotoxic activity. Infection and Immunity. 70: 1924–1935.

Sha, J., Pillai, L., Fadl, A.A., Galindo, C.L., Erova, T.E., and Chopra, A.K. 2005.

The type III secretion system and cytotoxic enterotoxin alter the virulence

of Aeromonas hydrophila. Infection and Immunity. 73: 6446-6457.

Shabbiri, K., Adnan, A., Jamil, S., Ahmad, W., Noor, B., and Rafique, H.M. 2012.

Medium optimization of protease production by Brevibacterium linens

DSM 20158, using statistical approach. Brazilian Journal of Microbiology.

1051-1061.

Page 56: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

137

Shafee, N., Aris, S.N., Rahman, R.N.Z.A., Basri, M. and Salleh, A.B. 2005.

Optimization of environmental and nutritional conditions for the production

of alkaline protease by a newly isolated bacterium Bacillus cereus Strain

146. Journal of Applied Sciences Research. 1: 1-8.

Shahidi, F., Metusalach, and Brown, J.A. 1998.Carotenoids pigment in seafood and

aquaculture. Critical Reviews in Food Science and Nutrition. 38: 1-67.

Shanmugaiah, V., Mathivanan, N., Balasubramanian, N., and Manoharan, P.T. 2008.

Optimization of cultural conditions for production of chitinase by Bacillus

laterosporous MML2270 isolated from rice rhizosphere soil. African

Journal of Biotechnology. 7: 2562-2568.

Shen, H., Kuo, C.C., Chou, J., Delvolve, A., Jackson, S. N., Post, J., Woods, A. S.,

Hoffer, B. J., Wang, Y., and Harvey, B. K. 2009. Astaxanthin reduces

ischemic brain injury in adult rats. Federation of American Societies for

Experimental Biology Journal. 23: 1958 -1968.

Show, K.Y., Lee, D.J., Tay, J.H., Lee, T.M., and Chang, J.S. 2015. Microalgal

drying and cell disruption – Recent advances. Bioresource Technology.

184: 258–266.

Siala, R., Hammemi, I., Sellimi, S., Vallaeys, T., Kamoun, A.S., and Nasri, M. 2015.

Arthrobacter arilaitensis Re117 as a source of solvent-stable proteases:

Production, characteristics, potential application in the deproteinization of

shrimp wastes and evaluation in liquid laundry commercial detergents.

Advances in Bioscience and Biotechnology. 6: 105-119.

Sila, A., Nasri, M., and Bougatef, A. 2012. Isolation and characterization of

carotenoproteins from deep-water pink shrimp processing waste.

International Journal of Biological Macromolecules. 51: 953-959.

Sindhu, S. and Sherief, P.M. 2011. Extraction, characterization, antioxidant and anti-

inflammatory properties of carotenoids from the shell waste of arabian red

shrimp Aristeus alcocki, Ramadan 1938. The Open Conference

Proceedings Journal. 2: 95-103.

Singh, G. and Pai, R.S. 2014. Optimization (Central Composite Design) and

validation of HPLC Method for investigation of emtricitabine loaded

poly(lactic-co-glycolic acid) Nanoparticles: In vitro drug release and in

vivo pharmacokinetic studies. The Scientific World Journal.

http://dx.doi.org/10.1155/2014/583090

Singh, L., Ram, M.S., Agarwal, M.K., and Alam, S.I. 2000. Characterization of

Aeromonas hydrophila strains and their evaluation for biodegradation of

night soil. World Journal of Microbiology and Biotechnology. 16: 625-630.

Singh, L., Ram, M.S., Aggarwal, M.K., and Alam, S.I. 1994. Simultaneous

production of amylase and protease by Aeromonas hydrophila PC5,

psychrotrophic bacterium. World Journal of Microbiology and

Biotechnology. 40: 339-348.

Page 57: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

138

Singh, V., Chaudhary, D.K., and Mani, I. 2012a. Molecular characterization and

modeling of secondary structure of 16S rRNA from Aeromonas veronii.

International Journal of Applied Biology and Pharmaceutical Technology.

3: 253-260.

Singh, R.K., Kumar, D.P., Solanki, M.K., Singh, P., Srivastva, A.K., Kumar, S.,

Kashyap, P.L., Saxena, A.K., Singhal, P.K., and Arora, D.K. 2012b.

Optimization of media components for chitinase productionby chickpea

rhizosphere associated Lysinibacillus fusiformis B-CM18. Journal of Basic

Microbiology. 52: 1–10.

Singh, R.S. 2013. A comparative study on cell disruption methods for release of

aspartase from Escherichia coli K-12. Indian Journal of Experimental

Biology. 51: 997-1003.

Sliwka, H.R., Partali, V., and Lockwood, S.F. (2010). Hydrophilic carotenoids:

carotenoid aggregates. In J.T. Landrum (Ed.), Carotenoids: Physical,

chemical, and biological functions and properties. Boca Raton, Florida:

CRC Press.

Sono, C. 2009. History of glutamate production. The American Journal of Clinical

Nutrition. 90: 728-732.

Sowmya, R., Rathinaraj, K. and Sachindra, N.M. 2011. An autolytic process for

recovery of antioxidant activity rich carotenoprotein from shrimp heads.

Marine Biotechnology. 13: 918-927.

Spinelli, J. and Mahnken, C. 1978. Carotenoid deposition in pen-reared salmonids

fed diets containing oil extracts of red crab (Pleuroncodes planipes).

Aquaculture. 13: 213.

Steinbrenner, J. and Linden, H. 2003. Light induction of carotenoid biosynthesis

genes in the green alga Haematococcus pluvialis: regulation by

photosynthetic redox control. Plant Molecular Biology. 52: 343-356.

Stewart, E.J. 2012. Growing unculturable bacteria. Journal of Bacteriology. 194:

4151-4160.

Sumantha, A., Larroche, C., and Pandey, A. 2006. Microbiology and industrial

biotechnology of food-grade proteases: a perspective. Food Technology and

Biotechnology. 44: 211-220.

Swann, L., and White, M.R. (1989). Diagnosis and treatment of Aeromonas

hydrophila infection of fish. Aquaculture extension- Illinois-Indiana Sea

Grant Program. 461: 91-92.

Synowiecki, J. and Al-Khateeb, N.A.A.Q. 2000. The recovery of protein hydrolysate

during enzymatic isolation of chitin from shrimp Crangon crangon

processing discards. Food Chemistry. 68: 147-152.

Synowiecki, J., and Al-Khateeb, N.A.A.Q. 1997. Mycelia of Mucor rouxii as a

source of chitin and chitosan. Food Chemistry .60: 605-610.

Page 58: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

139

Tambekar, S.D. and Tambekar, D.H. 2013. Optimization of the production and

partial characterization of an extracellular alkaline protease from thermo-

halo-alkalophilic lonar lake bacteria. Bioscience Discovery. 4: 30-38.

Tangeras, A., and Slinde, E. (1994). Coloring of salmonoids in aquaculture: The

yeast Phaffia rhodozyma as a source of astaxanthin. In: A.M Martin, (Ed),

Fisheries processing: Biotechnological application (pp 394-431). London:

Chapman & Hall.

Tao, Q., Li, A., Liu, X., Ma, R., An, Y., and Shi, L. 2011. Protecting enzymes

against heat inactivation by temperature-sensitive polymer in confined

space. Physical Chemistry Chemical Physics. 13: 16265–16271.

Thana, P., Machmudah, S., Goto, M., Sasaki, M., Pavasant, P., and Shotipruk, A.

2008. Response surface methodology to supercritical carbon dioxide

extraction of astaxanthin from Haematococcus pluvialis. Bioresource

Technology. 99: 3110–3115.

Thiagarajan, V., Revathia, R., Aparanjinib, K., Sivamanic, P., Girilala, M., Priyad,

C.S., and Kalaichelvan, P.T. 2011. Extra cellular chitinase production by

Streptomyces sp. PTK19 in submerged fermentation and its lytic activity on

Fusarium oxysporum PTK2 cell wall. International Journal of Current

Science. 1: 30-44.

Thongrod, S., Tansutapanich, A., and Torrissen, O.J. (1995). Effect of dietary

astaxanthin supplement on accumulation, survival and growth in postlarvae

of Penaeus monodon Fabricus. In: P. Lavens, E. Jaspers, and I. Roelands

(Eds), Larvi’95-fish and Shellfish Larviculture Symposium. European

Aquaculture Society (pp. 251-254). Special Publication No. 24, European

Aquaculture Society. Ghent, Belgium: Ghent University.

Thumar, J.T. and Singh, S.P. 2007. Secretion of an alkaline protease from a salt-

tolerant and alkaliphilic, Streptomyces clavuligerus strain MIT-1. Brazilian

Journal of Microbiology. 38:766-772.

Tomás, J.M. 2012. The main Aeromonas pathogenic factors. International Scholarly

Research Network Microbiology. 2012: 1-22.

Trower, C.J., Abo, S., Majeed, K.N., and Itzstein, M.V. 2000. Production an

enterotoxin by a gastro-enteritis associated Aeromonas strain. Journal of

Medical Microbiology. 49:121-126.

Trust, T.J., Bull, L.M., Currie, B.R. and Buckley, J.T. 1979. Obligate anaerobic

bacteria in the gastrointestinal microflora of the grass carp

(Ctenopharyngodon idella), goldfish (Carassius auratus), and rainbow

trout (Salmo gairdneri). Journal of the Fisheries Research Board Canada.

36: 1174–1179.

Tsai. G.J. and Chen, T.H. 1996. Incidence and toxigenicity of Aeromonas

hydrophila in seafood. International Journal of Food Microbiology. 31:

121-131.

Page 59: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

140

Tume, R.K., Sikes, A.L., Tabrett, S., and Smith, D.M. 2009. Effect of background

colour on the distribution of astaxanthin in black tiger prawn (Penaeus

monodon): Effective method for improvement of cooked colour.

Aquaculture. 296: 129–135.

Turujman, S.A., Wamer, W.G., Wie, R.R., and Albert, R.H. 1997. Rapid liquid

chromatographic method to distinguish wild salmon from aquacultures

salmon fed synthetic astaxanthin. Journal of AOAC International. 80: 622-

632.

Upton, C. and Buckley, J.T. 1995. A new family of lipolytic enzyme. Trends in

Biochemical Sciences. 20: 178-179.

Ushakumari, U.N. and Ramanujan, R. 2012. Astaxanthin from shrimp shell wastes.

International Journal Of Pharmaceutical Chemistry Research. 1: 1-6.

Vivekanandhan, G., Savithamani, K., and Lakshmanaperumalsamy, P. 2003.

Influence of pH, salt concentration and temperature on the growth of

Aeromonas hydrophila. Journal of Environmental Biology. 24: 373-379.

Walsh, T.R., Payne, D.J. McGowan, A.P., and Bennett, P.M. 1995. A clinical isolate

of Aeromonas sobria with three chromosomally mediated inducible β-

lactamases: A cephalosporinase, a penicillinase, and a third enzyme

displaying carbapenemase activity. Journal of Antimicrobial

Chemotheraphy. 35: 271-279.

Wang S.L., Yang C.W., Liang T.W., Peng J.H., and Wang C.L. 2009. Degradation

of chitin and production of bioactive materials by bioconversion of squid

pens. Carbohydrate Polymers.78: 205-212.

Wang, S.L., and Yeh, P.Y. 2008. Purification and characterization of a chitosanase

from a nattokinase producing strain Bacillus subtilis TKU007 using shrimp

shell powder as a medium. Process Biochemistry. 43:132–138.

Wang, D.Q., Li, Y.Q., Hu, X.Q., Su, W.M., and Zhong, M. 2015. Combined

enzymatic and mechanical cell disruption and lipid extraction of green

algae Neochloris oleoabundans. International Journal of Molecular

Sciences. 16: 7707- 7722.

Wang, K., Yan, P.S., and Cao, L.X. 2014a. Chitinase from a novel strain of Serratia

marcescens JPP1 for biocontrol of aflatoxin: Molecular characterization

and production optimization using response surface methodology. BioMed

Research International. Doi: 10.1155/2014/482623

Wang, S.L, Yang, C.H., Liang, T.W., and Yen, Y.H. 2008. Optimization of

conditions for protease production by Chryseobacterium taeanense

TKU001. Bioresource Technology. 99: 3700-3707.

Wang, S.L. and Chang, W.T. 1997. Purification and characterization of two

bifunctional chitinases/lysozymes extracellularly produced by

Pseudomonas aeruginosa K-187 in a shrimp and crab shell powder

medium. Applied and Environmental Microbiology.63: 380–386.

Page 60: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

141

Wang, S.L., and Yeh, P.L. 2006. Production of a surfactant- and solvent-stable

alkaliphilic protease by bioconversion of shrimp shell wastes fermented by

Bacillus subtilis TKU007. Process Biochemistry. 41:1545-1552.

Wang, S.L., Chang, T.J., and Liang, T.W. 2010. Conversion and degradation of

shellfish wastes by Serratia sp. TKU016 fermentation for the production of

enzymes and bioactive materials. Biodegradation. 21:321–333.

Wang, S.L., Chang, W.T., and Lu, M.C. 1995. Production of chitinase by

Pseudomonas aeruginosa K-187 using shrimp and crab shell powder as

carbon source. Proceedings of The National Science Council, Republic of

China. Part B, Life Sciences. 19: 105-112.

Wang, S.L., Chao, C.H., Liang, T.W., and Chen, C.C. 2009. Purification and

characterization of protease and chitinase from Bacillus cereus TKU006

and conversion of marine wastes by these enzymes. Marine Biotechnology.

11: 334–344.

Wang, S.L., Chio, Y.H., Yen, Y.H., and Wang, C.L. 2007. Two surfactant stable

alkaline proteases from Vibrio fluvialis TKU005 and their applications.

Enzyme Microbial Technology. 40: 1213- 1220.

Wang, S.L., Kao, T.Y., Wang, C.L., Yen, Y.H., Chern, M.K., and Chen, Y.H.

2006a. A solvent stable metalloprotease produced by Bacillus sp. TKU004

and its application in the deproteinization of squid pen for β –chitin

preparation. Enzyme and Microbial Technology. 39:724-731.

Wang, S.L., Lin, T.Y., Yen, Y.H., Liao, F.H., and Chen, J.Y. 2006b. Bioconversion

of shellfish chitin for the production of Bacillus subtilis W-118 chitinase.

Carbohydrate Research. 341: 2507-2515.

Wang, S.L., Wang, C.Y., and Huang, T.Y. 2008. Microbial reclamation of squid pen

for the production of a novel extracellular serine protease by Lactobacillus

paracasei subsp. paracasei TKU012. Bioresource Technology. 99:3411–

3417.

Wang, X., Lee, B.T., and Son, A.J. 2014b. Physical lysis only (PLO) methods

suitable as rapid sample pretreatment for qPCR assay. Applied

Microbiology and Biotechnology. 98: 8719-8728.

Wang, Y.L. And Gu, J.D. 2005. Influence of temperature, salinity and pH on the

growth of environmental Aeromonas and Vibrio species isolated from Mai

Po and the inner deep bay nature reserve ramsar site of Hong Kong.

Journal of Basic Microbiology. 45: 83– 93.

Wasli, A.S., Salleh, M.M., Abd-Aziz, S., Hassan, O., and Mahadi, N.M. 2009.

Medium optimization for chitinase production from Trichoderma virens

using central composite design. Biotechnology and Bioprocess

Engineering. 14: 781-787.

Webb, M. 1949. The influence of magnesium on cell division. 3. The effect of

magnesium on the growth of bacteria in simple chemically defined media.

Journal of General Microbiology. 3: 418-424.

Page 61: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

142

Weesepoel, Y., Vincken, J.P., Pop, R.M., Liua K., and Gruppen, H. 2013. Sodiation

as a tool for enhancing the diagnostic value of MALDI-TOF/TOF-MS

spectra of complex astaxanthin ester mixtures from Haematococcus

pluvialis. Journal of Mass Spectrometry. 48: 862–874.

Wu, W., Lu, M.B., and Yu, L.J. 2011. A new environmentally friendly method for

astaxanthin extraction from Xanthophyllomyces dendrorhous. European

Food Research and Technology. 232: 463-467.

Xia, J.L., Xiong, J., Zhang, R.Y., Liu, K.K., Huang, B., and Nie, Z.Y. 2011.

Production of chitinase and its optimization from a novel isolate Serratia

marcescens XJ-01. Indian Journal of Microbiology. 51: 301–306.

Xiao, A.F., Ni, H., Cai, H.N., Li, L.J., Su, W.J., and Yang, Q.M. 2009. An improved

process for cell disruption and astaxanthin extraction from Phaffia

rhodozyma. World Journal of Microbiology and Biotechnology. 25:2029–

2034.

Xu, X.J., Ferguson, M.R., Popov, V.L., Houston, C.W., Peterson, J.W., and Chopra,

A.K. 1998. Role of a cytotoxic enterotoxin in Aeromonas-mediated

infections: Development of transposon and isogenic mutants. Infection and

Immunity. 66:3501–3509.

Xu, Y., Gallert, C. and Winter, J. 2008. Chitin purification from shrimp wastes by

microbial deproteination and decalcification. Environmental Biotechnology.

79: 687-697.

Xu, Z. and Godber, J.S. 2000. Comparison of supercritical fluid and solvent

extraction methods in extracting γ-oryzanol from rice bran. Journal of The

American Oil Chemists Society. 77: 547-551.

Yang, J., Tan, H., Yang, R., Sun, X., Zhai, H., and Li, K. 2011. Astaxanthin

production by Phaffia rhodozyma fermentation of cassava residues

substrate. Agricultural Engineering International: CIGR Journal. 13: 1-6.

Yang, J.K., Shih, I.L., Tzeng, Y.M., and Wang, S.L. 2000. Production and

purification of protease from a Bacillus subtilis that can deproteinize

crustacean wastes. Enzyme and Microbial Technology. 26:406-413.

Yen, Y.H., Li, P.L., Wang, C.L., and Wang S.L. 2006. An antifungal protease

produced by Pseudomonas aeruginosa M-1001 with shrimp crab shell

powder as carbon source. Enzyme and Microbial Technology. 39: 311-317.

Yildiz, H., Bekcan, S., Karasu Benli, A.C., and Akan, M. 2005. Some blood

parameters in the eel (Anguilla anguilla) spontaneously infected with

Aeromonas hydrophila, Israel. Journal of Veterinary Medicine. 60: 91-92.

Yin, C.H., Yang, S.Z., Liu, X.H., and Yan, H. 2013. Efficient extraction of

astaxanthin from Phaffia rhodozyma with polar and non-polar solvents after

acid washing. Chinese Journal of Chemical Engineering. 21: 776-780.

Yokoyama, A., Izumida, H., and Miki, W. 1994. Production of astaxanthin by the

marine bacterium Agrobacterium aurantiacum. Bioscience, Biotechnology

and Biochemistry. 58: 1842-1844.

Page 62: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

143

Yoshida, H., Yanai, H., Ito, K., Tomono, Y., Koikeda, T., Tsukahara, H., and Tada,

N., 2010. Administration of natural astaxanthin increases serum HDL-

cholestrol and adiponectin in subjects with mild hyperlipidemia.

Artherosclerosis. 209: 520-523.

Younes, I. and Rinaudo, M. 2015. Chitin and chitosan preparation from marine

sources. Structure, properties and applications. Marine Drugs. 13: 1133-

1174.

Young, A. and Britton, G. (1993). Carotenoids in photosynthesis. Chapman and

Hall, London.

Yu, H.B., Rao, P.S.S., Lee, H.C., Vilches, S., Merino, S., Tomas, J.M., and Leung,

K.Y. 2004. A type III secretion system is required for Aeromonas

hydrophila AH-1 pathogenesis. Infection and Immunity. 72: 1248–1256.

Yu, H.B., Zhang, Y.L., Lau, Y.L., Yao, F., Vilches, S., Merino, S., Tomas, J.M., and

Howard, S.P. 2005. Identification and characterization of putative virulence

genes and gene clusters in Aeromonas hydrophila PPD134 ⁄ 91. Applied

and Environmental Microbiology. 71: 4469–4477.

Yuan, J.P. (1999). Characteristics and chromatographic separation of astaxanthin

and its esters from the microalga Haematococcus pluvialis (Doctoral

dissertation). Retrieved from

http://hub.hku.hk/bitstream/10722/35452/1/FullText.pdf?accept=1

Yuan, J.P. and Chen, F. 2000. Purification of trans-astaxanthin from a high-yielding

astaxanthin ester-producing strain of the microalga Haematococcus

pluvialis. Food Chemistry. 68: 443-448.

Yuan, J.P., and Chen, F. 1998 Chromatographic separation and purification of trans-

astaxanthin from the extracts of Haematococcus pluvialis. Journal of

Agricultural and Food Chemistry. 46: 3371-3375.

Yuan, J.P., Chen, F. Liu, X., and Li, X.Z. 2002. Carotenoid composition in the green

microalga Chlorococcum. Food Chemistry. 76: 319–325.

Yuangsoi, B., Jintasataporn, O., Areechon, N., and Tabthipwon, P. 2008. Validated

TLC-densitometric analysis for determination of carotenoids in fancy carp

(Cyprinus carpio) serum and the application for pharmacokinetic parameter

assessment. Songklanakarin Journal of Science and Technology. 30: 693-

700.

Zacaria, J., Delamare, A.P.L., Costa, S.O.P., and Echeverrigaray, S. 2010. Diversity

of extracellular proteases among Aeromonas determined by zymogram

analysis. Journal of Applied Microbiology. 109: 212–219.

Zaky, M.M.M., Mansour, F.A., and Persson, K.M. 2010. Factors influencing multi-

drug resistant and plasmid DNA harbouring Aeromonas hydrophila isolated

from Lake Manzala, Egypt. Journal of Bacteriology Research. 2: 30-40

Page 63: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

144

Zhang, D., Bland, J.M., Xu, D., and Chung, S. 2015. Degradation of chitin and

chitosan by a recombinant chitinase derived from a virulent Aeromonas

hydrophila isolated from diseased channel catfish. Advances in

Microbiolgy. 5: 611-619.

Zhang, H., Fang, J., Deng, Y., & Zhao, Y. 2014a. Optimized production of Serratia

marcescens B742 mutants for preparing chitin from shrimp shells powders.

International Journal of Biological Macromolecules. 69: 319-328.

Zhang, Q., Shi, G., Tang, G., Zou, Z., Yao, G., and Zeng, G. 2012. A food-borne

outbreak of Aeromonas hydrophila in a college, Xingyi City, Guizhou,

China. Western Pacific Region Surveillance and Response Journal. 3: 39—

43.

Zhang, X., Cai, W., Tao, Z., and Arias, C.R. 2014b. Survival of Fish-Pathogenic

Strains of Aeromonas hydrophila under Starvation. Journal of Aquatic

Animal Health. 26: 190-193.

Zhang, Y.J., Zhang, S., Liu, X.Z., Wen, H.A., and Wang, M. 2010. A simple method

of genomic DNA extraction suitable for analysis of bulk fungal strains.

Letters in Applied Microbiology. 51: 114–118.

Zhang, Y.L., Ong, C.T., and Leung, K.Y. 2000. Molecular analysis of genetic

differences between virulent and avirulent strains of Aeromonas hydrophila

isolated from diseased fish. Microbiology. 146: 999 – 1009.

Zhu, C., Naqvi, S., Capell, T., and Christou, P. 2009. Metabolic engineering of

ketocarotenoid biosynthesis in higher plants. Archives of Biochemistry and

Biophysics. 483: 182-190.

Zukaite, V. and Biziulevicius, G.A. 2000. Acceleration of hyaluronidase production

in the course production of Clostridium perfringens can be achieved with

bacteriolytic enzymes. Letters in Applied Microbiology. 30: 203-206.

Page 64: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

163

BIODATA OF STUDENT

Born in the heart of Malaysia on November 5th, 1988; Cheong Jee Yin obtained her

primary and secondary education from SK Convent Bukit Nanas Kuala Lumpur. Upon

completing her secondary studies, she was offered a 3 years course by Universiti Putra

Malaysia to further her studies in the field of Biology. During her final year of study in

UPM, she was registered under Assoc. Prof. Dr. Muskhazli Mustafa to complete a final

year project entitled “Deproteinization of crustacean shells wastes by Bacillus subtilis

14893”. In 2011, she obtained a Bachelor’s Honours Degree in Biology.

Upon graduation she was offered a Master’s degree by the same undergraduate lecturer

which she accepted the offer. In 2013, she successfully converted her Master degree

studies into Doctoral degree. Within her years of study she has published two journal

articles in her work field. Working on similar background of research, microbes and

astaxanthin has been her passion of research.

Page 65: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

164

LIST OF PUBLICATIONS

Published Journals

Cheong, J.Y., Nor Azwady, A.A., Rusea, G., Noormasshela, U.A., Nurul Shaziera,

A.G., Azleen, A.A. and Muskhazli M. 2014. The availability of astaxanthin

from shrimp shell wastes through microbial fermentations, Aeromonas

hydrophila and cell disruptions. International Journal of Agriculture and

Biology. 16: 277-284.

Cheong, J.Y., Muskhazli, M., Nor Azwady, A.A., Rusea, G., and Azleen A.A. 2013.

Enhancement of protease production by the optimization of Bacillus subtilis

culture medium. Malaysian Journal of Microbiology. 9: 43-50.

Noormasshela, U. A., Nurul Shaziera, A. G., Cheong, J. Y., Yakubu, S., Azleen, A.

A., Nor Azwady, A. A., and Muskhazli, M. 2015. Toxicity of Bacillus

thuringiensis biopesticide produced in shrimp pond sludge as alternative

culture medium against Bactrocera dorsalis (Hendel). Acta Biologica

Malaysiana. 4: 5-16.

Yakubu, S., Nor Azwady., A.A., Zakaria, M.P., Normasshela, U.A., Nurul Shaziera,

A.G., Cheong, J.Y., Azleen, A.A. and Muskhazli M. 2014. Evaluation of

pH and temperature effects on mycoremediation of phenanthrene by

Trichoderma sp. Acta Biologica Malaysiana. 3: 35-42.

Muskhazli, M., Normasshela, U., Cheong, J.Y., Nor Azwady, A.A., and Rusea, G.

2012. Purification of Chitinase 33kDa and expression pattern of chit33 in

Trichoderma longibrachiatum T28. Acta Biologica Malaysiana. 1: 18.

List of Proceedings

Cheong, J.Y., Muskhazli, M., Nor Azwady, A. A., Siti Aqlima, A., and Azleen, A. A.

2014. Extraction and purification of astaxanthin by Aeromonas hydrophila.

In Proceeding of the Malaysia International Biological Symposium, 28-29th

October 2014, Selangor, Malaysia.

Cheong, J.Y., Nor Azwady, A.A, Rusea, G., Noormasshela, U.A., Nurul Shaziera,

A.G., Safiya, Y., Azleen, A.A and Muskhazli, M. 2013. Recovery of

Astaxanthin from Shrimp Shells by Aeromonas hydrophilia and Mechanical

Cell Disruption. In Proceeding of the 5th Fundamental Science Congress,

20-21st August 2013, Selangor, Malaysia. pp 98-101.

Page 66: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM

165

Noormasshela, U.A., Nurul Shaziera A.G., Cheong J.Y., Yakubu, S., Azleen A.A.,

Nor Azwady A.A., and Muskhazli, M. 2013. Toxicity of Bacillus

thuringiensis biopesticide produced in shrimp pond sludge as alternative

culture medium against Bactrocera dorsalis (Hendel). In Proceeding of the

5th Fundamental Science Congress, 20-21st August 2013, Selangor,

Malaysia. pp 93-97

Nurul Shaziera, A.G., Nor Azwady, A.A., Noormasshela, U.A., Cheong, J.Y.,

Yakubu, S., Azleen, A.A., and Muskhazli, M. 2013. Assessment of

Ganoderma boninense PER 71 as saccharification agent based on

lignocellulolytic enzymes activities from pretreated paddy straw

hydrolysate. In Proceeding of the 5th Fundamental Science Congress, 20-

21st August 2013, Selangor, Malaysia. pp 102-106.

Yakubu, S., Nor Azwady, A.A., Zakaria, M.P., Noormashela, U.A., Nor Shaziera,

A.G., Cheong, J.Y., Azleen, A.A., and Muskhazli, M. 2013. Application of

fungi isolated from soil for PAH (phenanthrene) degradation. In Proceeding

of the 5th Fundamental Science Congress, 20-21st August 2013, Selangor,

Malaysia. pp 223-226.

Cheong, J.Y., Muskhazli, M., Nor Azwady, A. A., and Azleen A. A. 2012.

Extracellular neutral chitinase and protease production from a newly

isolated bacteria. In Proceeding of the Malaysia International Biological

Symposium, 11-12th July 2012, Selangor, Malaysia. pp 101

Cheong, J.Y., Muskhazli, M. And Nor Azwady, A.A. 2011. Deproteinization of

crustacean waste shell by Bacillus subtilis ATCC 14893. In Proceedings of

the 4th Regional Fundamental Science Congress, 5-6th July 2011, Selangor,

Malaysia. pp 177-178.

Page 67: UNIVERSITI PUTRA MALAYSIA ISOLATION, OPTIMIZATION AND ...psasir.upm.edu.my/id/eprint/66866/1/FS 2016 60 IR.pdf · Campuran heksana : aseton (3: 1 v / v) adalah sistem eluen terbaik

© COPYRIG

HT UPM