characteristics of a packed distillation column for on

136
Retrospective eses and Dissertations Iowa State University Capstones, eses and Dissertations 1983 Characteristics of a packed distillation column for on-farm ethanol production Timothy M. P. Wall Iowa State University Follow this and additional works at: hps://lib.dr.iastate.edu/rtd Part of the Bioresource and Agricultural Engineering Commons , and the Oil, Gas, and Energy Commons is esis is brought to you for free and open access by the Iowa State University Capstones, eses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective eses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Recommended Citation Wall, Timothy M. P., "Characteristics of a packed distillation column for on-farm ethanol production" (1983). Retrospective eses and Dissertations. 16660. hps://lib.dr.iastate.edu/rtd/16660

Upload: others

Post on 18-Oct-2021

9 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Characteristics of a packed distillation column for on

Retrospective Theses and Dissertations Iowa State University Capstones, Theses andDissertations

1983

Characteristics of a packed distillation column foron-farm ethanol productionTimothy M. P. WallIowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Bioresource and Agricultural Engineering Commons, and the Oil, Gas, and EnergyCommons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University DigitalRepository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University DigitalRepository. For more information, please contact [email protected].

Recommended CitationWall, Timothy M. P., "Characteristics of a packed distillation column for on-farm ethanol production" (1983). Retrospective Theses andDissertations. 16660.https://lib.dr.iastate.edu/rtd/16660

Page 2: Characteristics of a packed distillation column for on

Characteristics of a packed distillation column

for on-farm ethanol production

by

Timothy M. P. Wall

A Thesis Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

Major: Agricultural Engineering

Signatures have been redacted for privacy

Iowa State University Ame s, Iowa

1983

Page 3: Characteristics of a packed distillation column for on

LIST OF SYMBOLS

INTRODUCTION

ii

TABLE OF CONTENTS

Page

iii

OBJECTIVES 5

DISTILLATION COLUMN DESIGN 6

DESCRIPTION OF COMPUTER AIDED DESIGN PROGRAM 27

DESIGN 35

DATA COLLECTION 43

COLUMN CONSTRUCTION 65

EXPERIMENTAL PROCEDURE 70

RESULTS 71

DISCUSSION AND RECOMMENDATIONS 75

CONCLUSIONS 79

REFERENCES 80

AKNOWLEDGEMENTS 82

APPENDIX A: DESIGN COMPUTER PROGRAM LISTING 83

APPENDIX B: DATA LOGGER COMPUTER CONTROL PROGRAM LISTING 92

APPENDIX C: DATA COLLECTED ON AUGUST 24, 1982 97

APPENDIX D: DATA COLLECTED ON AUGUST 21, 1982 101

APPENDIX E: COMPUTER DATA COLLECTED ON AUGUST 24, 1982 105

Page 4: Characteristics of a packed distillation column for on

iii

LIST OF SYMBOLS

B bottoms molar flow rate

BM bottoms mass flow rate

cp specific heat

D distillate molar flow rate

DM distillate mass flow rate

d column diameter

F feed molar flow rate

FM feed mass flow rate

I D, 1 1 , 1 2 , 13 current

L molar flow rate at the bo~tom of the column

L molar reflux rate

liquid molar flow in rectifying and stripping

section respectively

MF , MB, MD mass fraction of ethanol in feed, bottoms, and

distillate respectively

. m mass flow rate of coolant

. m

steam mass flow rate of steam

N number of ideal stages

p proof

q moles added to the stripping section liquid due the

introduction of one mole of feed

R reflux ratio

Page 5: Characteristics of a packed distillation column for on

iv

resistance

V, V molar vapour flow flow rate top and bottom of column

respectively

Vn+1' Vm+1 molar vapour flow rates in rectifying and

stripping section

V vapour velocity in column gas

Vo voltage out of op-amp circuit

XD , XB , XF mol fracti~n of ethanol in the distillate,

bottoms and feed respectively

mol fraction of ethanol in the liquid in the

rectifying and stripping section

mol fraction of ethanol in the vapour entering the

condenser and leaving the reboiler respectively

y y n+1' m+1

mole fraction of ethanol in the vapour in the

rectifying and stripping section

Pgas vapour density

P liquid density

latent heat of vapo~rization of distillate,

feed and bottoms respectively

Page 6: Characteristics of a packed distillation column for on

INTRODUCTION

Wi&h an abundance of corn on farms in recen& years

&here has been increasing interest in &he feasib1li&y of

conver&ing corn to ethanol for use as fuel. For &his reason

a number of small scale ethanol plants (producing less than

300 m3/year) have been built on farms and for research

in the las& few years.

The production of ethanol from corn by fermenta&ion

usually consis&s of six steps (Bothast and Detroy 1981): (1)

milling, (2) COOking, (3) saccharification, (4)

fermentation, (5) distillation, and (6) feed recovery.

A kernel of corn consists of a fibre shell which

contains s&arch, prote1n, gluten and germ (Ensminger and

Olen&ine 1978). The shell needs to be brOken and the starch

disrupted to enhance enzymatic hydrolysis during COOking.

This can be accomplished using a hammer or roller mill &0

grind the corn in&o a fine meal which will pass through a 20

mesh (0.833 mm) screen.

make a slurry.

Water is then added to the meal to

In the COOking process, enzymes are used to break down

the starch &0 soluble dextrins. COOking can be ei&her

carried out continuously, in batches or by extrusion.

Saccharification 1S the conversion of dextrins to simple

Page 7: Characteristics of a packed distillation column for on

sugars such as glucose.

temperature sensitive.

2

Eacn enzyme used is pH and

Fermentation converts the sugar into ethanol and carbon

dioxide (Williams 1980). It is a relatively simple process

to perform, provided care is taken to keep equipment clean.

Normally, the solution to be fermented has a sugar content

of about 15-20% to effect a compromise between microorganism

inhibition and distillation economics. Yeast is used for

the conversion and the whole process can take up to 3 days.

The result of fermentation is a mixture of ethanol,

water and any solids that could not be converted to ethanol.

Continuous distillation is commonly used to separate the

ethanol from the water.

The residual water and SOllds is called stillage. This

has a feed value for livestock. Large commercial producers

of ethanol usually produce dried distiller's solubles and

dried distiller's grains because these are more readily

stored and marketed.

The actual amount of ethanol obtained from a quantity

of corn depends on the efficiency of the above processes.

Typically 10 kg of corn (dry basis) contains about 8 kg of

starch (Ensminger and Olentine 1978). In practice only

about 6.3 kg out of 10 kg dry matter is converted to sugar.

Due to the molecular combination witn water, 7 kg of sugar

Page 8: Characteristics of a packed distillation column for on

3

are actually obtained. This sugar is converted to 3.6 kg of

ethanol and 3.4 kg of carbon dioxide. The density of 200

proof (proof = 2 x actual percent by volume of ethanol in a

mixture) ethanol is 794 Kg/m 3 (table 3) so 10 kg (dry basis)

of corn can produce ij.5 L of ethanol at 200 proof.

Distillation is a new technology to the farm community

and to agribusiness. One of the functions of agricultural

extension is transferring technology from the university to

farmers. In recent years computer programs for

mlcrocomputers have been jointly produced by personnel in

extension and research to be used as a medium for technology

transfer. This report gives the theory of distillation

column design and a computer program which was written to

calculate column characteristics for deSigning the column

used in this project. The program also provides the

framework for de~eloping a program suitable for use by

extenSion. Chemical englneers probably have advanced

computer aided programs for designing large industrial

distillation columns, such as for petroleum refining but

these are not accessible to the farm audience.

The dis~illation column was part of a complete farm

size distillery. One of the concerns with farm-scale plants

has been/maintenance of distilla~e quality at levels that

allow optimum output to input energy ratios. It was

Page 9: Characteristics of a packed distillation column for on

4

expected that some form of automatic control would be

essential if distillate quality were to remain constant as

feed quality and temperature varied.

Before automatic control can be applied to a system,

either theoretical or empirical Knowledge of the transfer

function of the plant is necessary. Distillation plant

transfer functions could be obtained from theoretical

calculations (Coughanowr and Koppel 1965) but it was thought

that a more satisfactory approach would be to calculate a

transfer function from measured characteristics. Determining

enough characteristics of the worKing column would require

measurements from several sensors. Because commercially

available data loggers were considered excessively

expensive, it was decided that a data logger based on a

commercial microcomputer would be constructed.

Each of the topics briefly discussed here is an area that

can be studied in detail individually, but in this report

only continuous distillation is examined. A method of

column design is discussed, followed by construction and

then performance evaluation using an electroniC data

collection system.

Page 10: Characteristics of a packed distillation column for on

5

OBJECTIVES

1. Develop an interactlve design program that would run on

a microcomputer.

2. Design a distillation column that would produce 180

proof ethanol continuously at 100 L/day.

3. Construct the column using commercially and locally

available materials.

4. Evaluate the column performance with the aid of an

electronic data acquisition system designed to measure

temperatures and liquid flow rates.

Page 11: Characteristics of a packed distillation column for on

6

DISTILLATION COLUMN DESIGN

When building a distlilation column, it is necessary to

know the number of ideal equilibrium stages required to

obtain the necessary separation (hence column height),

diameter of column, heat input at reboiler and heat out at

the condenser.

The McCabe-Thiele (McCabe and Smith 1976) graphical

method was used for this design which assumes constant molar

overflow and 100S efficiency. At low pressures ethanol

water mi~tures satisfy the constant molar overflow condltion

(Brown et al. 1950).

McCabe-Thiele method

Ethanol and water comprise a two component system.

Separation by distillation can be examined graphically based

on material balances. Figure 1 shows the layout for a

continuous fractionating column. The column is divided into

two parts, the upper being the rectifying section and the

lower the stripping section. The beer feed (liquid to be

separated) enters between them. Total material and

component balances for each section can be calculated. For

the rectifying section a material balance for the ethanol

Page 12: Characteristics of a packed distillation column for on

I FY II~G RECT SEC TION

ED

STR SE

IPPING CTION

L n X n

L m Xm

t

I

v y o

REFLUX

"'n+1 PUMP

'(n+1

V m+1 Y m+1

-V YB

L

7

CONDENSER

COO LANT FLOW

L 0 DISTILLATE

XD v "D

I~EBOILER

STEAM F LOW

~ 0 X

BOTTOMS B

Figure 1. Material-balance for a continuous fractionating column

Page 13: Characteristics of a packed distillation column for on

8

component can be wrltten:

(1)

which rearranged gives:

LnXn VY D - LX D Yn+1 = + ---------

Vn+1 Vn+1

( 2)

A material balance around the condenser yields:

D = V - L

and for the rectifying section (including condenser):

D = V 1 - L n+ n (4 )

Similarly a material balance for the ethanol component gives:

DX D = VY D - LX D = Vn+1Yn+1 - LnXn ( 5 )

Substituting Eqs. 4 and 5 into Eq. 2 and rearranging:

( 6 )

This can be plotted on a graph with X as the abscissa n

and Yn+1 as the ordinate and is ~nown as the rectifying

section operating line. A similar equation can be developed

for the stripping section where:

B = L - V m m+1

and

solving gives

L - B m L - B m

(7)

(8 )

( 9 )

Page 14: Characteristics of a packed distillation column for on

9

which is the stripping section operating line. Note that

this line passes through the point (XB,XB).

For constant molar overflow the subscripts n, m, n+1

and m+1 can be dropped, which makes the material balance

equations linear and the operating lines straight.

Reflux ratio

Reflux ratio is defined as

R = L/O (10)

Eliminating V and L from Eq. (6) gives

Y = RX Xo

----- + -----R + 1 R + 1

This line can be plotted if Rand Xo are known.

the line passes through the po~nt (Xo,XO).

( 1 1 )

Note that

The number of ideal stages in cascade that are needed

to produce XB

and Xo at the ends of the column may be

determ~ned from ethanol-water equilibrium data (table 1).

The l~quid and vapour streams leaving a stage are in

equilibrium, thus for each stage (say stage n) the point

(X ,Y ) must lie on the equilibrium curve. n n

So by plotting

the operating lines and equilibrium curve on the same graph,

the stages can be located (figure 2).

Page 15: Characteristics of a packed distillation column for on

10

Table 1. Equilibrium data for ethanol-water mixtures at atmospheric pressure expressed as mole fractions of liquid (X) and vapour (Y) for ethanol

. X Y X Y

0 0 0.3213 0.5826 0.0190 0.1100 0.3965 0.6122 0.0210 0.1990 0.4030 0.6190 0.0330 0.2120 0.4030 0.6250 0.0500 0.3530 0.5019 0.6564 0.0121 0-3891 0.5198 0.6599 0.0850 0.4110 0.5560 0.6150 0.0966 0.4315 0.5132 0.6841 0.1050 0.4580 0.6020 0.6950 o. 1238 0.4104 0.6430 0.1130 0.1250 0.4880 0.6163 0.1385 0.1350 0.4840 0.6890 0.1410 0.1661 0.5089 0.1412 0.1815 0.2331 0.5445 0.8050 .0.8140 0.2608 0.5580 0.8943 0.8943 0.3150 0.5110 0.9260 0.9110 0-3210 0.5120 0.9810 0.9850

Least squares fitted polynomials for ranges indicated:

0.0966 < X < 1

Y = 0.061063 + 4.935611 X - 16.186 X2 + 24.0~94 X3 11.5682 X

o < X < 0.0966

Y = -4.6318x10-5 + 10.0338 X - 20.0183 X2 - 1~64.5249 X3 + 9143.132 X

Linear approximation for 0 < X < 0.03

Y = 8.5382 X

------------------------------------------------------------Source: Hirata, M., S. Ohe, and K. Nagahama. Computer A~ded Data BOOk of Vapour-Liquid Equilibria. Kodansha Ltd. 12-21 Otowa 2-chome, BunKyo-ku, TOkyo, 1915. ------------------------------------------------------------

Page 16: Characteristics of a packed distillation column for on

:z 0

I-u ~ 0:: LL..

UJ ...J 0 :::::: 0:: ::J 0 o. ~ >

0.5

VAPOUR-LIQUID EQUILIBRIUM LINE

11

RECTIFYING OPERATI NG

LIUE

FEED LINE (SATURATED LIQUID)

0.5

LIQUID MOLE FRACTION

Figure 2. Vapour-liquid equilibrium curve for ethanol-water mixture

Page 17: Characteristics of a packed distillation column for on

12

Feed

The condition of the feed affects operation. The feed

may be superheated vapour, saturated vapour, a mixture of

liquid and vapour, saturated liquid at its bubble pOint, or

cold liquid. All five feed types can be correlated by the

use of one factor q, where q is the additional number"of

moles of liquid flow in the stripping section that results

from the introduction of one mole of feed.

Hence,

q > 1, Cold feed

q = 1 , Saturated liquid

0 < q < 1 , Feed partially vapour

q = 0, Saturated vapour

q < 0, Superheated vapour

Only cold and saturated liquid feed are considered in this

design. For purely liquid feed, q is given by:

The contribution of feed to the column liquid is qF, so:

L = L + qF (13)

and for vapour the contribution is (q-1)F so:

Page 18: Characteristics of a packed distillation column for on

13

v = V + (1-q)F

With constant molar overflow (from Eqs. 5 and 8):

VY = LX + OXO

VY = LX - BX B

By substitution and rearranging Eqs. 13, 14,

15, 16 and noting FX F = OXO + BX B (complete material

balance for one component), the feed llne is:

Y = -qX XF

----- + -----1 - q 1 - q

( 1 4 )

( 1 5 )

( 16)

( 17)

Note that the feed line passes through point (X X) F' F •

It may be shown that the recti~ying and stripping

operating lines and feed line all intersect at the same

point. This enables all three to be drawn when XF

' XB

' XO

'

q and R are ~nown.

Example

Find the number of ldeal stages for an ethanol-water

feed of 24 proof supplied at the bubble point. The

distillate is required at 180 proof and the bottoms product

should be less than 1 proof. Assume R = 4.

Page 19: Characteristics of a packed distillation column for on

14

Solution

Feed

The proofs need to be changed to mole fractions.

24 proof = 12% by volume

From table 2 the density of the mixture = 984.3 kg/m 3

Pure ethanol has a density = 793.7 kg/m 3 (table 3)

The mass of ethanol in 1 m3 of 24 proof feed

= 793.7 x 0.12 = 95.2 kg

and the mass of water = 984.3 - 95.2 = 889.1 kg

Molecular weights:

= 18

Therefore, number of moles of ethanol = 95.2/46 = 2.070

number of moles of water = 889.1/18 = 49.394

total moles = 51.464

mole fraction of feed XF = 2.07/51.464 = 0.0402

Similarly,

XD = 0.7009

and XB = 1.558X10- 3

Since R=4, the rectifying operating line (from Eq. 11) will be:

Y = 0.8 X + 0.1402 (18)

Page 20: Characteristics of a packed distillation column for on

15

Table 2. Density of ethanol-water mixtures at 15 C and 1 atm for proofs less than 30

Proof

1 2 3 4 5 6 7 8 9

10 1 1 12 13 14 15

DenSi§Y kg/m

999.25 998.5 997.76 997.03 996.30 995.59 994.87 994.18 993.49 992.81 992.14 991.49 990.84 990.21 989.59

Polynomial function:

Proof

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

p = 999.991 - 0.7603 p + 4.4518x10- 3 p2

DenSi§Y kg/m

988.98 988.37 987.78 987.19 986.60 986.01 985.43 984.85 984.28 983·72 983. 17 982.62 982.08 981. 55 981.02

Source: Department of the Treasury. Bureau of Alcohol, Tobacco and Firearms. Gauging Manual. ATF-P5110.6 (11/78). u.S. Government Printing Office, Washington D.C., 1978

Page 21: Characteristics of a packed distillation column for on

16

Table 3. Density of e~hanol-wa~er mixtures at 15 C and 1 atm for proofs greater than 160

------------------------------------------------------------Proof

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

Densi§Y kg/m

862.25 860.84 859.43 858.01 856.58 855.15 853.69 852.23 850.76 849.27 847.77 846.25 844.71 843.17 841.62 840.06 838.48 836.88 835.26 833.62

Polynomial function:

Proof

181 182 183 184 185 186 187 188 189 190 19 1 192 193 194 195 196 197 198 199 200

DenSi§Y l<g/m

831.96 830.29 828.59 826.85 825.09 823.30 821.49 819.63 817.75 815.82 813.85 811.84 809.79 807.70 805.55 803.33 801.04 798.66 796.20 793.65

p = 1305.51 - 4.155 p - 1'~17Xao-3 p2 + 1.3118X10-4 p3 -4.135x10 p

Source: Department of the Treasury. Bureau of Alcohol, Tobacco and Firearms. Gauging Manual. ATF-P5110.6 (11/78). U.S. Government Printing Office, Washing~on, D.C., 1978.

Page 22: Characteristics of a packed distillation column for on

17

The feed is, at the bubble point, so q= 1 and the feed

line is X = XF = 0.0402. The operating line for the

stripping section passes through (XB,XB

) and intersects the

feed line at the same point as the rectifying operating line.

Knowing XF = 0.0402 and using Eq. 18, this common

intersection point is (0.0402,0.1724). The rectifying,

stripping and feed lines can be drawn on a graph (see figure

2 for graphical solution).

Data points for the equilibrium curve are given in table 1.

See figure 2 for graphical solution.

Number of plates in rectifying section = 4

Number of plates in stripping section = 2

The feed plate will be the fourth plate down from the top.

Stripping section plates

The example shows that using graphical construction is

difficult when determining the stripping section stages when

At these small values of XB , however, Henry's

law indicates that it is reasonable to assume the

equilibrium curve is straight.

Page 23: Characteristics of a packed distillation column for on

18

Then Che number of places is given by:

N = In (XA1-XB1)/(XA-XB)

(McCabe and SmiCh 1976; see figure 3)

OpCimum reflux raCio

( 19)

The to Cal number of plates is parcly dependenC on the

reflux raCio. AC to Cal reflux, Che places will be a

minimum. The column diameCer, however, is proporCional Co

Che square root of Che vapour veloclty which will increase

with reflux. The cosC of Che column is roughly proporCional

Co Che column area so there will be an optimum reflux raCio

aC which a column has a leasc cost. IC also musC be noted

Chac che heat required aC the reboiler and quancity of

coolant needed at the condenser (figure 1) increase with

reflux. Calculations co find Che optimum reflux ratio can

be made based on the above, buC normally it is Caken as 1.2

to 2.0 Cimes the minimum reflux (McCabe and SmiCh 1976).

Minimum reflux occurs when the number of plates becomes

infinice, and is determined by passing the reccifying

operating line though the point where the feed line and

equilibrium curve intersect or, in Che case of an azeotropic

mixture (ethanol and water falls into this category), by

Page 24: Characteristics of a packed distillation column for on

:z o I­u <x: 0::: lJ..

lJJ ..J o ~

0::: :::> o c.. <x: :>

19

STR I PP I riG I

OPERAT r tJG LINE

XA

LIMIT OF STRAIGHT-LINE PORTION OF THE

EQUILIBRIUM CURVE

EQUILIBRIUM LINE

y = x NUMBER OF IDEAL

STAGES

LIQUID MOLE FRACTION

Figure 3. Vapour-liquid equilibrium curve for ethanol-water mixture at low concentration of ethanol

Page 25: Characteristics of a packed distillation column for on

20

allowing the rectifying operating line to be tangent to the

equilibrium curve. The larger reflux ratio found by the two

methods is used as the minimum reflux.

Flow rates

For a total material balance:

(20)

and for a component balance:

( 2 1 )

Usually, the feed rate and feed proof are Known and the

distillate proof and bottoms proof are design goals. From

these, the mole feed rate and the mole fractions of the

feed, distillate and bottoms can be determined. Sy solving

E q s. 20 and 2 1, the dis till ate and bot tom s mol a r f1 ox x_a t_e s

can be found:

D XF - Xs = ------- (22)

F XD - Xs

S XD - XF

= ------- (23) F X

D - Xs

Similarly, if mass balances are used:

DM MF - MS = ------- (24)

FM MD - MS

Page 26: Characteristics of a packed distillation column for on

21

BM MD - MF = ------- (25)

FM MD - MB

By using the densities (tables 2 and 3) of the various

components, volumetriC flow rates can be determined and

flows within the column can be calculated. Using Eq. 10:

L = D R (26)

since R is established from the minimum reflux rate.

The material balance around the condenser (Eq. 13) gives

(27)

Equations 13 and 14 can be used to find V and L, the vapour

and liquid flow rates, ·in the stripping section.

Heat flows

For design purposes, it is necessary to know the amount

of heat flowing into and out of the reboiler and condenser,

in order to estimate the heat and coolant requirements.

In this design, steam is used in the reboiler. If it

is considered that the energy lost with the bottoms product

is small compared with the latent heat of steam and

stripping section vapour, then the energy balance around the

reboiler becomes:

(28)

Using steam tables to find the latent heat of the steam at

Page 27: Characteristics of a packed distillation column for on

22

the pressure being used, the mass flow rate of steam can be

found.

For the condenser using water as a coolant:

m C p ( T 2 - T 1) = V M AD

The inlet and outlet temperature (T1

,T2

) are set design

parameters which usually give a ~T of about 10 C.

It is assumed that the radiant heat loss from the

column itself is small and the system is essentially

adiabatic. The values of AF' AD and AB will vary wi th

proo f • Table 4 gives latent heats for different mass

fractions.

Column diameter

The vapour velocity up the column must not be greater

than the settling velocity of the liquid droplets down the

column or entrainment will occur. The settling velocity is

con si d er ed to be,,_.in.-t-he-Ne-wton-i-an. reg ime (Den n 1980) so:

(v g~:-= 0.055 ( pi Pgas - 1)) (30)

'- ..."....,-- ~ The rna x i m-u-ril"V-a p'O'ur-- v e loc it Y is in the stripping section for

cold and bubble point feed, so:

If at the bottom of the column the vapour is assumed to be

steam at atmospheric pressure, then from steam tables:

Page 28: Characteristics of a packed distillation column for on

23

Table 4. Latent heats of vapourization for ethanol-water mixtures expressed as mass fraction of ethanol

Mass fraction ethanol

0.00 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.10 0.80 0.90 1 .00

Polynomial function:

Latent heat kJ/Kg

2255.8 2199.5 2144.9 2019.3 1819.2 1132-3 1584.1 1433.9 • 1285.9 1144.8 998.1 851.1

A = 2254 - 941.05 X - 1215.2 *2 + 1315.31 X3 - 151.56 X

Source: Brown, G. G., D. Katz, A. S. Foust, and R. Schneidewind. Unit Operations. John Wiley & Sons, Inc., New YorK, 1950.

Page 29: Characteristics of a packed distillation column for on

24

Pgas = 0.598 Kg/m 3

and P = 998 Kg/m 3

which substituting in Eq. 30 and solving with Eq. 31 gives:

d (32)

Packed columns and plate columns

Plate columns have a number of horizontal plates or

trays equally spaced. Tray designs vary greatly (Brown et

ale 1950), but essentially provide a volume to ensure

intimate contact of the counter flowing streams of liquid and

vapour.

In a packed column, the plates are replaced with loose

pieces of material pacKed at random. The length of the

column is proportional to the number of theoretical plates

For each required and varies according to the packing used.

packing, there is a different height equivalent per

theoretical plate (H.E.T.P.) (Perry 1941) I which is listed

by the manufacturer. The maximum dimension for pacKing is

about 10$ of the column diameter.

Computer aided design

This brief review of distillation column design

suggests that the repeated applications of the graphical

construction needed for each change in input conditions

Page 30: Characteristics of a packed distillation column for on

25

would soon become tedious. It was felt that a computer

program developed to run on a desk top computer would not

only allow the column for this project to be designed more

flexibly, but would also serve as the skeleton of a program

that could be further developed by Agricultural Engineering

Extension.

The program was written for Apple II with 48k of memory

and a printer.

The required program input are:

Feed proof

Feed rate (L/min)

Feed temperature (C)

Distillate proof

Bottoms proof

Minimum reflux ratio multiplier.

The program prints out:

Total plates

Rectifying plates

Stripping plates

Reflux ratio

Distillate rate (L/min)

Bottoms rate (L/min)

Coolant rate (L/min)

Steam rate (kg/h)

Page 31: Characteristics of a packed distillation column for on

Condensate rate (L/min)

Column diameter (em).

26

The complete program listing is contained in Appendix A.

Page 32: Characteristics of a packed distillation column for on

27

DISTILLATION COLUMN DESIGN BY MICROCOMPUTER

Line numbers Program description

10-120

130-150

160

170

180

190

200

210-550

560-590

Print format statements for use with Apple print

using program.

Defining of the fourth order polynomial and its

first and second derivatives, which are used to

represent the equilibrium curve. The coefficients

are changed depending on the section of curve

being used (table 1).

Polynomial for latent heat of vapourlzation of the

ethanol-water"mlxture as a function of mass

fraction (table 4).

Polynomial for mixture density as a function of

proof with proofs less than 30 (table 2).

Polynomial for mixture density as a function of

proof with proofs greater than 160 (table 3).

Polynomial for bubble point temperature as a

function of mass fraction for proofs less then 30

(table 5).

Densities of pure ethanol and water, respectively.

Input statements for all variables used in the

design.

Dimensionalizing arrays used.

Page 33: Characteristics of a packed distillation column for on

600-970

980-990

1000

1010

1020

28

Initializing arrays with design parameters so that

they will be printed in table form with the

results.

Sets variables VE and MASS equal to the distillate

proof and distillate density.

Calculates the mass and mole fraction for the

distillate using subroutine 2010. which bases its

calculations on the variables VE and MASS.

Stores the variables mole fraction (XD). mass

fraction (MD) and mixture density (PD).

Sets coefficients of the equilibrium curve

polynomial for 0.0966 < mole fraction < 1 (table

1). Coefficients are stored in subroutine 1830.

1030-1100 Finds the minimum reflux ratio based on the

tangent to the equilibrium curve by equating the

slope of the rectifying section operating line

(Y-YD)/(X-XD) to the first differential (gradient

of the tangent (Fl(X))) of the equilibrium curve

polynomial. Newton's approximation (Selby and

Girling 1965) is used to solve the equations

iteratively. Variable R2DMIN stores this value to

compare with the minimum reflux value found from

the intersection of the feed line with the

equilibrium curve.

Page 34: Characteristics of a packed distillation column for on

29

1110-1140 Calculates mole fraction (XB), mass fraction (MB)

and density (PS) of the bottoms product.

1150-1180 Calculates mole fraction (XF), mass fraction (MF)

and density (PF) of the feed.

1190

1200

1210

1220

1230

1240

1250

Determines latent heat of vapourization of feed

(LFAN).

Calculates q-value (Q) for feed line based on the

bubble point temperature (TP(MF», feed

temperature (FT) and latent heat (LFAN).

Sets equilibrium curve coefficients for 0.0966 < X

< 1.

If Q = 1 then feed line is X = XF.

Uses Newton's approximation in subroutine 1950 to

flnd the point of intersection of the feed line

with the equilibrium curve.

If the point of intersection is out of the range

the of polynomial then coefficients for 0.03 < X <

0.0966, stored in subroutine 1890, are used and

the point of intersection is recalculated.

The equilibrium curve is approximated to a

straight line for mole fractions less than 0.03.

The feed line is then solved simultaneously with

the equilibrium line Y = 8.5382333*X (table 1) if

necessary.

Page 35: Characteristics of a packed distillation column for on

1260

30

Res~ores coefficien~s for equilibrium curve 0.966

< X < 1-

1270-1280 Poin~ of intersection for feed line and

1290

1300

1310

equilibrium line (X1F,Y1F).

Calculates minimum reflux ratio (R2DMIN) based on

the point (X1F,Y1F).

Compares R2DMIN with the previously calculated

reflux ratio (R1DMIN) and selects the larger

value.

Reflux ratio = minimum reflux * const (1.2 < const

< 2).

1320-1350 Prin~s to the screen the q-value (Q) and reflux

ra~io for given feed proof and feed temperature.

1360-1370 Rectifying operating line is of ~he form

Y=MR*X+CR. Constants MR and CR are calculated

from the distillate mole frac~ion and reflux

ratio.

1380-1390 Feed line and rectifying operating line are solved

simultaneously to find the point of intersec~ion

(X2F,Y2F).

1400-1410 Stripping operating line is Y=MS*X+CS, where

MS=(YB-Y2F)/(XB-X2F) and CS=Y2F-MS*X2F (Note YB =

XB) •

1420-1530 Determines the number of ideal s~ages (N?). The

Page 36: Characteristics of a packed distillation column for on

31

sequence starts at the point (XD,YD) and uses

Newton's approximation in subroutine 1760 to find

the point of intersection for each ideal stage

down the curve. Each X value obtained from the

subroutine is substituted into the appropriate

operating line to find a new Y value, which is

used for the next stage and returned to the

subroutine. Lines 1420 and 1450 are needed to

initialize the Newton's approXimation, which can

be unstable When not started near the root. Each

equilibrium point (X,Y) is printed to the screen.

When the equilibrium points are being calculated

for the stripping section and X < 0.03, the number

6f plates is calculated by the logarithmic method

using Eq. 19.

1540-1590 Uses the logarithmic method of finding the number

of ideal stages between two straight lines.

S=LOG(XA1-XB1)/(XA-XB). Variable NP is the total

number of ideal stages and variable NS is the

number of ideal stages in the stripping section.

1600-1690 Total stages, stripping stages and rectifying

stages are stored in arrays as integers.

1700 Subroutine calculates the flow rates.

1710-1730 Next increment for the feed temperature.

Page 37: Characteristics of a packed distillation column for on

1740

1750

32

Subroutine for printing results.

End.

Subroutines

1760-1820 Newton's approximation used to find the

intersection of the ideal stages with the

equilibrium curve. Total stages advance by one

each time.

1830-1800 Equilibrium polynomial coefficients for 0.0966 < X

< 1-

1890-1940 Equilibrium polynomial coefficients for 0.03 < X <

0.0966.

1950-2000 Newton's approximation used to find the point of

intersection of the feed line with the equilibrium

curve.

2010-2050 Calculates the mass fraction and mole fraction

based on the values of variables VE and MASS.

2060-2070 Latent heat of vapourization for the distillate

and bottoms, respectively.

2080-2130 For each feed rate, the mass flow rates of the

distillate, bottoms, liquid reflux, rectifying

section vapour and stripping section vapour are

calculated (kg/min).

2140-2150 Array storage of the distillate and bottoms flow

Page 38: Characteristics of a packed distillation column for on

33

rates (L/min).

2160-2170 Array storage of the heat out at the condenser and

heat in at the reboiler (KW).

2180-2210 Maximum and minimum heat requirements of the

condenser and reboiler are stored to use in

calculating the coolant and steam requi~ements.

2220-2230 Maximum and minimum vapour flow rate in the

stripping section are stored to be used in

calculating the column diameter.

2240-2270 Increment of feed rate.

2280-3400 Prints the results.

2930-2940 Maximum and minimum flow rates of coolant water

based on a 10 C temperature rise across the

condenser (L/min).

2950-2960 Maximum and minimum steam requi~ement based on the

enthalpy of vapourization of steam supplied at 5.5

x 105 Pa (2095 KJ/Kg). Steam rate in Kg/h.

2970-2980 Condensate flow rate (L/min).

3050-3060 Maximum and minimum column diameters (em) from Eq.

31.

Page 39: Characteristics of a packed distillation column for on

34

Table 5. Bubble point temperature of ethanol-water mixture expressed as mass fraction of ethanol for proofs less than 30

Mass fraction ethanol

0.00 0.01 0.02 0.03 0.04 0.05 0.10

Polynomial function:

Bubble point C

100.00 98.94 98.06 91.11 96.00 95·.22 91 .18

T = 99.91 - 103.015 X + 199.5292 X2

Source: Brown, G. G., D. Katz, A. S. Foust, and R. Schneidewind. Unit Operations. John Wiley & Sons, Inc., New York, 1950. ----

Page 40: Characteristics of a packed distillation column for on

35

DESIGN

Distillation column

For the distillation column used. the design program

was run with the following conditions.

Feed proof: Maximum = 24. Minimum = 8. Increments = 4

Feed temperature (C): Maximum = 90. Minimum = 10.

Increments = 20

Feed rate (L/min): Maximum = 2.5. Minimum = 0.5.

Increments = 1

Distillate proof: 180

Bottoms proof: 0.1

Minimum reflux ratio multiplier: 1.5

Tables 6. 7. 8. 9 and 10 show the computir program

results. Table 6 indicates that the number of stages in the

rectifying section varies little with changes in t'eed

temperature and feed proof. The stages in the stripping

section vary by a greater amount. Since the building used

to house the column was limited in height (11 m). it was

decided to fix the length of the rectifying section and use

the remaining space for the stripping section.

The flow rates (table 9) indicate that the column

should have a diameter between 4.60 and 14.13 cm. Copper

drainage pipe. with a diameter of 10.00 cm. was available

Page 41: Characteristics of a packed distillation column for on

36

Table 6. Number of pla~es predic~ed when ~he dis~illate and the bottoms were fixed at 180 and 0.1 proof, respectively

Total Plates

Feed Proof

8 12 16 20 24

Rectifying Plates

Stripping Plates

8 12 16 20 24

8 12 16 20 24

10

15 14 14 13 14

6 6 6 6 6

9 8 8 7 8

Feed Temperature C 30 50 70

17 15 14 1 3 13

5 6 6 6 6

12 9 8 7 7

19 16 14 14 13

6 6 5 6 6

13 10

9 8 7

17 16 15 14 1 3

5 6 6 6 5

12 10

9 8 8

90

18 14 14 13 13

5 5 6 6 6

13 9 8 7 7

Page 42: Characteristics of a packed distillation column for on

37

Table 7. Reboiler heat demand (kW) predicted when the distillate and bottom were fixed at 180 and 0.1 proof, respectively

Feed rate = 0.5 L/min

Feed rate = 1.5 L/min

Feed rate = 2.5 L/min

Feed Proof

8 12 16 20 24

8 12 16 20 24

8 12 16 20 24

10

5.35 6.23 7.00 7.66 8.20

16.05 18.68 20.99 22.99 24.60

26.75 31 .13 34.98 38.32 41 .00

Feed 30

5.06 6.00 6.81 7.53 8.16

15.17 17.99 20.44 22.59 24.48

25.28 29.98 34.07 37.66 40.80

Temperature C 50 70

5.13 6.09 6.90 7.61 8.23

15.40 18.27 20.71 22.83 24.70

25.66 30.44 34.51 38.06 41.17

5.78 6.65 7.43 8.09 8.65

17 -33 19.94 22 -30 24.27 25.96

28.88 33.24 37.17 40.46 43.27

90

6. 15 7 .41 8.29 8.97 9.50

18.44 22.23 24.88 26·91 28.51

30.73 37.05 41 .47 44.85 47.52

------------------------------------------------------------

Page 43: Characteristics of a packed distillation column for on

38

Table 8. Condenser heat rejection (kW) predicted when the distillate and bottoms were fixed at 180 and 0.1 proof, respectively

Feed rate = 0.5

Feed Proof

L/min 8

Feed rate = 1.5

12 16 20 24

L/min 8

Feed rate = 2.5

12 16 20 24

L/min 8 12 16 20 24

10

1 .05 1 .48 1. 86 2. 18 2.44

3. 15 4.44 5.57 6.55 7-32

5.25 7.40 9.28

10.91 1 2 .21

Feed Temperature C 30 50 70

1. 25 1. 71 2. 11 2.46 2.77

3.75 5.13 6.33 7.39 8.31

6.25 8.55

10.55 12.31 13·85

1. 62 2.09 2.49 2.84 3. 15

4.87 6.28 7.48 8.53 9.45

8 • 11 10.46 12.46 14.21 15.75

2.26 2.69 3.08 3.41 3.69

6.79 8.08 9.25

10.23 11 .08

11 .32 13.47 15.42 17.05 18.46

90

2.78 3·39 3.83 4. 17 4.44

8.33 10. 18 11 .49 1 2 .51 13·32

13·88 16.97 19 . 16 20.85 22.20

Page 44: Characteristics of a packed distillation column for on

39

Table 9. Selected flow rates predicted when the distillate and bottoms were fixed at 180 and 0.1 proof, respectively

Feed Proof

Feed rate = 0.5 L/min 8

12 16 20 24

Steam, l<g/h 8.69 Condensate, L/min 0.145 Coolant, L/min 1. 50 Diameter, cm 4.61

Feed rate = 1 .5 L/min 8

12 16 20 24

Steam, l<g/h 26.05 Condensate, L/min 0.434 Coolant, L/min 4.51 Diameter, cm 7.98

Feed rate = 2.5 L/min 8

12 16 20 24

Steam, l<g/h 43.41 Condensate, L/min 0.724 Coolent, L/min 7.52 Diameter, cm 10.31

-

-

-

Distillate L/min

0.022 0.033 0.044 0.055 0.066

16·33 0.272 6 -36 6 -32

0.066 0.099 o. 133 0.166 0.199

48.96 0.816

19.08 10.94

O. 110 0.165 0.221 0.277 0.332

81 .60 1 .361

31 .81 14. 13

Bottoms L/min

0.479 0.468 0.458 0.447 0.437

1 .437 1 .405 1 .373 1 -342 1. 31 0

2.394 2 -341 2.288 2.236 2. 184

------------------------------------------------------------

Page 45: Characteristics of a packed distillation column for on

40

Table 10. Reflux ratio (1.5 x mlnlmum ratio) predicted when the distillate and bottoms were fixed at 180 and 0.1 proof, respectively

Feed Proof

8 /'2

~C6-

20 24

10

2.2 -2.0 1.9 1.7 1.5

Feed 30

2.9 2.5 2.2 2.0 1.8

Temperature C 50 70 90

4.0 6.0 7.6 3 ~3-- 4.5 6.0 2.8 3.7 4.9 2.5 3.2 4 • 1 2.2 2.8 3.5

Page 46: Characteristics of a packed distillation column for on

41

locally and therefore was used for construction.

limited the feed rate to about 1.5 L/min.

This

The packing for the column was plastic Flexirings (Koch

Engineering Company. Wichita. Kansas). The smallest

diameter available was 1.5 cm. which was greater than 10% of

the column diameter. but these were used in the rectifying

section because they were inexpensive compared with other

packings. The manufacturer's recommendation of 2.5 cm

packing was used in the stripping section. The H.E.T.P. of

the Flexirings was 25 to 40 cm. The rectifying section was

built 3 m long. which was longer than necessary to enable

higher than 180 proof distlilate to be produced.

Me'ters and pumps

The sizes of pumps and meters were based on the results

in table 9. The following flow meters were used:

Feed: Kent Metron meter (361 pulses/L). 1% accuracy

for flow rates of 1.13 to 15 L/min.

Coolant and condensate: Kent positive displacement

water meter (C-100-FE) (52 pulses/L). 1.5% accuracy for

flow rates of 0.95 to 16 L/min.

Reflux and distillate: FloScan 300-1 (10433 pulses/L).

2% accuracy for flow rates of 0.13 to 1.8 L/min.

The following pumps were used:

Page 47: Characteristics of a packed distillation column for on

42

Reflux pump: ViKing C32 gear pump driven by a manually

controlled variable speed D.C. motor.

Feed pump: Jabsco 7030 flexible-rotor pump driven by a

manually controlled variable speed D.C. motor.

Bottoms: The bottoms product flow was by gravity

through a solenoid valve controlled by a float switch in the

reboiler.

The steam entering the reboiler was at 33 KPa gauge.

This pressure was controlled by throttling the steam supply

through a Spence type ED series pressure regulator. Note

that for energy calculations the enthalpy of the supply

steam is used. The steam flow rate was controlled by a

pneumat..ic valve (Johnson controls series 9001) wi th 1 t.s

temperature sensor placed in the reboiler.

The water coolant flow rate was manually controlled

with a Kates automatic flow rate controller, which maintains

a constant flow rate regardless of the water pressure on

either side of the controller.

Data were collected electronically when possible with a

data logging device.

Page 48: Characteristics of a packed distillation column for on

43

DATA COLLECTION

Introduction

Tne operating characteristics of the distillation

column were determined experimentally. The flow meters

selected produce electric pulses having a frequency

proportional to the flow rate and these pulses can be

recorded electronically. Temperatures were also recorded

electronically using current sourcing temperature sensors.

These give a current proportional to the absolute

temperature. The data logging device used in this

experiment was a CBM (Commodore Business Machines)

microcomputer (CBM User Manual 1979) provided wlth locally

constructed interface circuits.

cassette tape.

CBM microcomputer

The data were stored on

The microprocessor used by the CBM is a 6502. which is

an 8-bit device (R6500 Hardware Manual 1978). At the slde

of the CBM case there is a memory expansion port Which can

be used to access the 6502 address and data lines for

interfacing external devices.

Page 49: Characteristics of a packed distillation column for on

44

Versatile Interface Adapter (VIA)

The 6522 VIA (R6500 Hardware Manual 1978) is a device

which acts as an interface between the microprocessor and

external circuits. It consists primarily of two

bi-directional ports, labeled PAO-PA7 and PBO-PB7, and two

16-bit counters. The VIA is programmable and has to be

initialized by software after every power up.

Figures 4 and 5 show how the two VIAs used for this

data logger are connected to the memory expansion connectors

of the CBM. All communication between the CBM and the VIAs

is digital in the form of TTL (transistor-transistor logic)

slgnals. The VIAs are controlled by the register select

lines (RSO-RS3), .which are connected to the CBM address

lines BAO-BA3. Before the VIA can accept any commands it has

to be enabled by the chip select lines CS1 and CS2, which

need high and low Signals, respectively, for chip selection.

The data bus lines (DO-D7) of the VIAs are directly

connected to the 6502 data bus in the CBM.

The control program for the data logger is written in

BASIC and is shown in Appendix B. To send data (write) to a

VIA the command POKE(address, data) is used; the read data

command is PEEK(address). Address is a decimal number which

1s translated internally by the CBM into the binary code for

chip selection and VIA control. For example, to select

Page 50: Characteristics of a packed distillation column for on

GN

O

BA

li

BA

I

BA

2

BA

3

BA

,

BA

8

RES

Boa

BOI

B0

2

803

B0

4

B0

5

BD

6

B01

8!i2

~I

."'-.

J9

·3

J9

·4

J9

-5

...I

ti-

~

J4

-??

.-. J4

·3

J4

·4

J4

-S

J4

-6

J4

·7

J4

-8

J4

·9

J9-2

1

; .IQ

-17

SE

L E

fll

IRQ

o J

9·2

2

J9·1

9

vssW

PA

&

2 3

8

RS

O

PAl

3

'7

RS

I P

A2

4

36

R

SZ

PA

3 5

35

RS

3 P

A4

6

PA

5 7

PAG

8

34

R

ES

P

Al

9

33

00

pa

o 10

32

01

<t

PBI

II

31

02

>

P

B2

12

30

0

3

C\J

P

B3

13

C\J

2

9

D.

lf)

pa

4

14

<D

28

0

5

PB

5

15

27

06

P

B6

~Ne

.~

07

P

B1

~

25

1/

2 N

C

18 N

C

24

eS

I e

B2

19

I 2

3

eS

2

ve

e rl.

22

R

/Vi

21

.5V

IR

Q

} to

fi

g

5

+5

v

~~1615

14

1'3t:

1\ IO~

PI}

~V

~LF'

3332

17

1Li>

I 'I

4:>

I

2 3 ~~~

7 8

L

INQ

12

3

INI f¥

----

-~

1--

---1

IN

2

21

IN3

I

1 37

01

1 IN

4

2

36

01

rfTT

IN5

3

35

0

2

IN6

• 2

Z0

n

Olp

F

3.

03

IN

7 5

33

D.

INB

6

I I

I r-

----

-' 32

0

5

IN9

7 r-

I· 31

0

6

INIO

S

f.-

30

0

1

INII

9

.---

-2

5

AO

A

INI2

10

1

2tl

l .---

"-2

6

AO

B

CO

14

13

10

9 8

f---

-IN

I3

\I

~LM32~

27

A

De

0 IN

14

12

U

2B

AD

O

0 E

Oe

l "

1

: II

0K

n

<t

29

A

LE

INI5

14

~ ~

40

OU

TPU

T M

ULl

8 E

NA

BLE

O

UT

STA

RT

ve

e

I 2

3 4

!5

6 1

f.-

l' "~ R

EF

-C

QM

P

~

.5v

IN

39

f!

L!5

V

CLO

CK

R

EF t

L-t

-,----f-

--

GN

O n-

IT f 11

2

F

56

n

1

: 11

5KO

~

'---

--1

-t-

----

---

l--

r t----- ~-

Ii

11

---

t5V

3OK

O

30

KO

13

0K

fl

30

Kn

r 2

Kn

2K

n12K

n 2K

nl T

RIM

P

OT

S

TR

IM

PO

TS

Fig

ure

4

. A

nalo

g

to d

igit

al

co

nv

ert

er

an

d

tem

pera

ture

sen

so

r cir

cu

its

} TO

SE

NS

OR

S

A0

59

0

~

\Jl

Page 51: Characteristics of a packed distillation column for on

GN

D

aA~

BA

I I[J

~9~-~3

~-----

------

------

-~~

BA

2

J~9~-~

4~----

------

------

--~

aA

3

J9

-5

~

BA

4

J9

-S

o

BA

a

9~-~1 ~ _

_ _

~

RE

S

~

BD~

~

BD

I

J4

-22

J4

-2

J4

-3

;jR

S2

P

AD

3

5

RS

3

3 D

O

PA

S

7

2 01

P

AS

I 0

2

PA

7 9

DA

TA

LIN

ES

FR

OM

C

OU

NT

ER

'S

(fIQ

. a

)

I.

. ..•

• '

aD

2

II J4

-4

IH-5

~

BD

3 Vi

z

~~

AA.'

30

03

~:

:: P

BO

1

0

B0

4

IIJ4

-S

29

9

04

~ >

PB

I

~D5

PB

2

;t

)( '"

J4

-7

' B

05

7 O

S

PB

3

sID

7

51~2

BD

SII

J4

-a

1;: o B

D7

J4

-9

~ ",,,,,

~I SIT

91 J4

-17

BR

/W

J9

-22

iRa

-I

r 23

m

2

2

R/W

?I

rna

+S

V

+5

V ~

VCC

0

I

I 2

2h

p'

]

~. on

~

5 14

a

tt 6

13

C

7 12

0

a

GN

D

9 --r

L---,'

Ic G

ND

T

II

>::J.>

::~ "'~if"J."

Q5

9~ Q

is'''~Q

+-5V

4:}

!I

s 7

40

4

Fig

ure

5

. M

ult

iple

xin

g

and

co

ntr

ol

cir

cu

it

CO

NTR

OL

RE

LAY

S

(no

l u

se

d)

AN

ALO

G

SW

ITC

HE

S

(IIQ

.4)

CO

UN

TE

R

CLE

AR

S

(fiQ

. 7

a 8

)

CO

NTR

OL

LIN

ES

fO

R

TR

I-S

TA

TE

B

UFF

ER

S

(lig

. a

)

CLE

AR

B

-B

IT

CO

UN

TER

TIM

ING

S

IGN

AL

(f

iQ.

7)

"" 0\

Page 52: Characteristics of a packed distillation column for on

47

the VIA in figure 4, in which CS2 is connected to SEL9 and

CS1 is connected to BA4, the address 36880 is used (SEL9 +

BA4 = 36864 decimal (9000 Hex) + 16 (24) (CBM User Manual

1979». To select the VIA in figure 5, address 37120 is used

(SEL9 + BA8 = 36864 + 256 (28». These two addresses are

stored as constants P and 0 in lines 230 and 240 of the

control program.

Initializing the VIAs

The VIA's bi-directional ports (PAO-PA7, PBO-PB7) can

be individually programmed so that each pin can either act

as an input or an output under the control of the Data

Direction Registers (DDRA, DDRB) which are set during

initializatlon. To make a pin an input, a "0" corresponding

to that pin must be put in the Data Direction Register;

similarly a "1" corresponds to an output.

The VIA in figure 4 is used to control and read datd

from an analog to digital converter. Port A is used to

recelve data and consists entirely of input lines, while

Port B is used for control (except for PB7 which is a data

line) and is configured mainly for output lines. To dchleve

this condition, it is necessary to determine the deCimal

number that the software must store in DDRA and DDRB. The

pins and their corresponding decimal numbers are given by (0

Page 53: Characteristics of a packed distillation column for on

input, 1 output).

Pi n Ii Port A Port B

Therefore DDRA = 0

48

DORB = 1 + 2 + 4 + 8 + 16 + 32 + 64 + 0 = 127

Table 11 gives the control settings for the RSO-RS3

pins used to select various registers in the VIA. To put 0

in DORA and 127 in DORB for ~he VIA in figure 4 ~he software

commands POKE(P + 3, 0) and POKE(P + 2, 127) are used (lines

250-260 of the program). The VIA is now initialized. Note

that PB6 has no connec~ion, so i~ does not matter whether it

is set as an input or an output. The command POKE(P + 2,

63) would also satisfy the system. Similarly, the second VIA

~s initialized wi~h Port A as inputs and Port B as outputs

(except PB7).

Table 11. Control addresses for the VIA registers

------------------------------------------------------------Register RS3 RS2 RS1 RSO Decimal Address

------------------------------------------------------------ODRA 0 0 1 1 3 + chip select DDRB 0 0 1 0 2 + Chip select ORA/IRA 0 0 0 1 + chip selec~ ORB/IRB 0 0 0 0 0 + chip select ARC 1 0 1 1 11 + chip select T1R-L 0 0 0 4 + Chip select T1R-H 0 0 1 5 + chip select

------------------------------------------------------------

Page 54: Characteristics of a packed distillation column for on

49

Once initialized, the VIAs are ready to receive and

send data. The output of Port B is accessed by the Output

Register (ORB), in which a "0" would cause the corresponding

pin to have a low output and "1" a high output. For

instance, to make pins PBO and PB6 high, the following

decimal value needs to be written to the ORB.

Pin H Port B

ORB = 1 + 64 = 65

6 1 1x26 (input)

Using Table 11 for the ORB address, the software

command required to obtain the above output configuration on

Port B of the VIA in figure 4 would be POKE(O + 0, 65) or

just POKE(O, 65). Once the Output Register is written to,

the pin outputs will remain unchanged (latched) until a

different data value is: stored. Pin PB1 was designated as

an input pin by the DDRB and its state will remain unaltered

whether it is written to by the ORB or not, i.e. POKE(O,

193) will accomplish the same result as above.

The data on Port A are received by reading the Input

Register (IRA). The commands PEEK(O + 1) and PEEK(P + 1)

will give a decimal value which can be interpreted to find

the state of each pin.

Page 55: Characteristics of a packed distillation column for on

50

Analog ~ digital converter

The ADC0817 chip (figure 4) is an analog to digital

converter (National Semiconductor 1980). An analog Signal

is an electric signal which can vary in amplitude to any

value within the range that a particular device can produce

(e.g. 0-5 V). A digital signal is one which changes

abruptly between two levels (i.e. high or low).

The temperature sensors are analog devices. An analog

to digital (A to D) converter is used to convert the analog

voltage derived from the sensor into a digital Signal that

can be read by the microcomputer.

The ADC0817 is a 16-channel 8-bit A to D converter that

can multiplex up to 16 different analog signals. An 8-bit A

to D converter can respond to an input change of 1 part in

256 of the working range; in this instance the range is 0-5

V. The conversion is linear such that 1 V input would give

a (255/5) = 51 decimal output.

The data lines of the A to D converter are connected

directly to port A of the VIA (figure 4). Each channel of

the ADC0817 is selected by the address pins A, B, C and D,

which are connected to pins PBO-PB3. Pin PB4 is

simultaneously connected to the "start" pin and "ALE" pin.

When a digital pulse 1S sent to these pins, the channel

selected by the address line will begin converting. When

Page 56: Characteristics of a packed distillation column for on

5 1

the conversion is stable an end of conversion signal (low to

high) will be given at pin "EOC" that can be read by the

microcomputer via pin PB7. In practice, control software

written in BASIC is so slow that by the time the

microcomputer can read PB7, after sending the start pulse

the conversion will be complete. In this case, the data can

be read immediately by sending a signal" (high) to the

tri-state control through PB5, which enables the data lines

so Port A can read the data.

For example, to read in the digital equivalent of the

analog signal on channel 10 the following sequence would be

used. First channel 10 is addressed by supplying the

command POKE(P, 10). The start conversion Signal, POKE(P,

10 + 16) is sent, next POKE(P, 10) is sent to give a

starting pulse (low-high-low), then the tri-state control 1S

enabled by POKE(P, 10 + 32) and finally the data value is

read with PEEK(P + 1). Note that a decimal value is read

into the microcomputer that is directly proportional to the

voltage on the channel being read.

Temperature transducer and circuit

The temperature transducer is an AD590 (Intersil

DataboOK 1981), which is a two terminal integrated circuit.

Calibration is at 298.2 K (25 C) when the transducer has an

Page 57: Characteristics of a packed distillation column for on

52

output of 298.2 pA that changes at the rate of 1 pA/K. The

direct current produced is unaffected by changes in voltage

supply (+4 to +30 V).

The analog current output needs to be converted to an

analog voltage with a 0 to 5 V range for the A to D

converter. This is achieved with an operational amplifier

connected as a summing circuit (Maloney 1979); figure 6

shows the circuit. The output voltage V , var1es from 0 to o

5 V. Calibration of V for rate change and absolute value o

is accomplished by adjusting the variable resistors R2 and R4

If the temperature range is selected as 0 to 100 C the

current 12 will vary from 273.2 to 373.2 pA. For Vo = 0 at

o C the current 13 must equal zero. An ideal operational

amplifier has ID = 0, so that at this state I, = 12 which

gives:

5 10-6

12 = ------- = 273·2 x A (33)

Rl + R3

Hence Rl + R2 = 18.3 Kohm, the values chosen were R, = '7

Kohm and R2 = 2 Kohm trim pot.

For the upper limit of Vo = 5 V at 100 C, Kirchoff's

law at the summing junction gives:

(34)

Page 58: Characteristics of a packed distillation column for on

I3

+ 5V

... --,

II

I2

-1

5V

·e----f

+

AD

59

0

10 K

.n.

Flg

ure

6

. T

em

pera

ture

sen

so

r clr

cu

it

22

0tl

. '.

eVO

O.lp

F

I U

1

W

Page 59: Characteristics of a packed distillation column for on

54

so 13 = -100 x 10-6 A.

For summing amplifier circuits (Maloney 1979)

-v o 13 = -------

R3 + R4

which gives R3 + R4 = 50 Kohm.

Values R3 = 39 Kohm and R4 = 20 Kohm trim pot.

From equations 33. 34 and 35 it can be found that

5 -------:0 T, x '0

5

R3 + R4 = (~~=~~)-~-~~:6

where T, is lower and T2 the upper temperature in K.

(36)

In this experiment the following temperature ranges and

resistors were used.

T 1 ( C) T2

(C) R 1 (K) R2

(K) R3

(K) R4 (K)

50 100 15 2 56 30 55 105 13 2 56 30 60 110 13 2 56 30 20 95 17 2 39 20

The LM324 (National Semiconductor 1980) was the

operational amplifier used because it has a single positive

supply voltage (figure 6). which insures that V does not o

become negative if the temperature being measured is below

the lower end of the temperature range. Negative voltages

can cause serious damage to A to D converters.

Page 60: Characteristics of a packed distillation column for on

55

Calibration of the temperature sensing circuit is done

by placing the transducer in a controlled temperature bath.

It is important that the lower end of the temperature range

is obtained to adjust R2 since the operational amplifier

offset (ID

~ 0) is also corrected for by this resistor. At

this condition I3 = 0 so the values of R3 and R4 are

unimportant. Once R2 is set R4 can be adjusted using a

higher temperature bath.

The sensitivity of the temperature measurements depends

largely on the temperature range chosen. A 0 to 100 C

temperature range is represented by 0 to 5 V Which, after

going to the A to D converter, is represented by an integer

between 0 and 255. Therefore on this temperature range the

microcomputer can only measure to within ~ 0.39 C. By

reducing the temperature range a more precise reading can be

made.

A total of 30 temperature sensors were used in the

experiment with 22 equally spaced down the column. The

approximate temperature distribution along the column is

known from the ethanol-water equilibrium data, thus the

temperature range of some sensors can be reduced to improve

precision. The top of column operates at about 78 C and the

bottom at 100 C. Therefore the first 8 sensors from the top

had. a temperature range of 50-100 C, the next 8 a range of

Page 61: Characteristics of a packed distillation column for on

56

55-105 C. and the final 6 (2 sensors unused) a range of

60-110 C. The remaining six sensors had a 20-95 C range and

were used to measure beer feed when cold. beer feed heated.

condenser coolant in and out. reflux temperature and the

temperature of ethanol leaving the condenser.

The A to 0 converter had only 16 channels. so analog

switches were used to double the use of each channel. The

LF13332N (National Semiconductor 1980) analog switches

(figure 4) switch from one set of 15 temperature ~ensors to

the other under the control of the multiplexing system shown

in figure 5. Lines 550-610 of the control software

(Appendix B) poll 15 temperature sensors and line 620

switches to the second 15 sensors. which are then polled by

lines 630-690. The 16th channel on the A to 0 converter was

reserved for measuring pressure. but the system was not

completed.

The arrays A (I) and B (I). in the software now store

numbers which are directly propor~ional to the temperatures

being measured. The program converts these numbers to

temperature readings (lines 740-1000 of the program).

Each equation depends on the temperature range being

used. For example. suppose that a sensor at the top of the

column produces a 1 V signal from the operational amplifier

which after A to 0 convertion is represented by the integer

Page 62: Characteristics of a packed distillation column for on

57

51. Then

temperature = 51x50/255 + 50 = 60 C.

The software shows a slightly different conversion

equation, because the A to D converter at the lower end of

the temperature range could not be completely zeroed. By

maKing a software correction the lower end of the range

could be obtained.

Counters

All the flow meters used in this experiment have

pulsing outputs proportional to the rate of flow of liquid.

To measure the flows it is necessary to Know the number of

pulses in a given time. To achieve this, the output of each

meter was connected to a 16-bit counter. The pulse train to

the counters was started and stopped by hardware controlled

by the CBM's internal clocK.

The hardware control primarily consists of dual pulse

synchronizers/drivers (SN74120) (TTL DatabooK 1981) and

divide by N counters used to step down the 1 MHz

microprocesser clocK. The SN74120 chips are used to start

and stop the pulse train. A signal to the SN74120 allows the

pulse train from the meters to pass through to the counters.

Another signal to the SN74120 then inhibits the pulse train,

after a started meter pulse has been completed. This insures

Page 63: Characteristics of a packed distillation column for on

58

no glitching of the counters.

The time period between the start and finish of the

pulse train was determined by the calculated flow rates, the

number of pulses from each meter, and the size of the

counters. For accuracy it is necessary to count as many

pulses as possible without the counter overflowing. Each

16-bit counter will count up to 65535 pulses. The time

period chosen had to insure that the pulse train from the

meter with the maximum pulse rate did not overflow the

counters and that the pulse train from the meter with the

minimum pulse rate registered sufficient pulses to allow an

accurate measurement. For this equipment a time period of

10 s was chosen.

The 10 s time period was accomplished by stepping down

the system's internal 1 MHz clock with a 16-bit counter in

the VIA, and two 4-bit counters. Two 4-bit counters

(SN14161) were used instead of decade counters (SN74160)

because the SN74161 direct clear feature is independent of

the state (high or low) of the clock input. This prevents

glitching when control software enables the clears to reset

the counters. The 4-bit counters are connected as ripple

look ahead counters (TTL Databook 1981) that will count up

to 255 before resetting to zero. For a 10 s time period

output these counters require a (10/256) = 0.039062 s input

Page 64: Characteristics of a packed distillation column for on

59

clock period. This comes from pin PB7 of the VIA.

The VIA internal counters can be used in several

different ways (R6500 Hardware Manual 1978). For this

application the VIA counter is initialized so that it counts

down from a set value to zero at a rate equal to the

system's clock (1 MHz). At zero the output of pin PB7 is

inverted (i.e. high to low or low to high) and the counter

is returned to its preset value to begin the sequence again.

The preset value is determined by the rate at which pin PB7

is required to oscillate. The 4-bit counters need a 0.039062

s clock input, but the SN74161s are positive edge triggered

counters meaning that pin PB7 would have to invert twice

every 0.039062 s. For this to happen the internal VIA

counter must reach zero at (0.039062/2) = 0.019531 s

intervals. A preset value of 19531 declining at the system

ClOCK rate of 1 MHz would accomplish this.

Conditioning pin PB7 to toggle is done during tne

initialization of the VIAs. When the respective bits ACR6

and ACR7 of the Auxiliary Control Register (ACR) in the VIA

are set to "1" pin PB7 will generate a continuous square

wave. The Auxiliary Control Register is accessed using the

address in Table 11 and the decimal value (2 6 + 27) = 192

is written to it (line 270 of software in appendix B).

During initialization the 16-bit counter also has to be

Page 65: Characteristics of a packed distillation column for on

60a

set to the value of 19531. Since the CBM is an 8-bit

machine that can only transfer numbers up to 255 at one time,

the 16-bit counter is loaded in two halves. The least

significant 8-bits are first loaded into Timer One

Register-Lower (T1R-L) then the most significant 8-bits are

loaded into Timer One Register-Higher (T1R-H), such that the

net effect is the number 19531 in the 16-bit counter. The

two 8-bit numbers are determined by:

Most significant

2 15

32768 19531= 0

214 2 13

16384 8192 1 0

212

4096 o

Binary 01001100 = 76 decimal.

211

2048 1

2 10

1024 1

+ 75 remainder

The most significant 8-bits = 76 and the least

significant = 75. Lines 280 and 290 initialize the VIA with

these values. Once initialized the VIA will continuously

toggle pin PB7 with a period of 0.039062 s until the power

is shut off or the CBM clock signal stops.

Figure 7 gives the complete 10 s timing c~rcuit

including the SN74120s. The SN74109 chip is a dual positive

edge triggered flip-flop (TTL databook 1981) that is needed

to synchronize the 256th pulse from the VIA with the stop

Page 66: Characteristics of a packed distillation column for on

TIM

ING

S

IGN

AL

(

CO

UN

TER

C

LEA

R

(f,O

5)

PU

L S

ES

FR

OM

FL

OW

ME

T

PU

LSE

S

TO

CO

UN

TER

S

(fiO

8

)

.5V

"5

V

+ 5

V T

+

5V

.5

V

t5V

TI6

TI

6 II)

, 15

16J

16T

3b '5V

...,~.

r.-L-'

V",C~C

;'::Q'

4

"5~ L

ve

c

'5va

-.l1

1 rt<

CLR

vce

VC

C

CLR

I Q

14

.-

J R

16

~ E

NP

Q,

13

~ E

NP

Q

13

NC

-.

CK

0 9

I IA

tl

-"'-

----,l

1

0K

n

~t :~

g \~

.~ K

(J

') Q

lO

Ne

J B

C

~ I

.......... O

---'

o/I

.lIN

\fIr

-L.

!f -

0 -

t5V

0

+5V

1l

4 1

2p

F

~ ':? ~ lo

c : ':

: ~ '; i

"'~1 3L

:!JC

K ~ Q

~'-1/2 742

3 Q~

r-=-

0 6

-0

6 3

-Q

6N

e

GIlD

C

LR

GN

O

CLR

1/

4 7

40

8

I"PR

CLR

GIlD

G

NO

t I

../.

" I

5T I -t'

+-

t~V

It

I:r J

-+l:

J I

L.. 1M

vee

2

M

I 1M

V

GC

2M I

L£c

lSI

2S

I:ti

-~ 1

51

51

pl1-

+5

V.J

.: 1

52

25

2 ~'5V +5V~ 1

52

252

p!4

.SV

o

--1

c IR

~ 2

R

12

4 IR

~

2R ~

[

5 IC

r:t

2C -

l..L

.-~ IC

~

2C r

-ll-

-,2

-IV

2Y

~

.e-IV

2Y

rill

--E

RS

7

IY

GN

O

2Y

9 7

IV

GN

O if

9

~

8.,!,.

! -~. -"

"~----

-".-"~

.-----

------

------

I F

igu

re

7.

Tim

ing

cir

ciu

t

+5

V

IJ'

o cr'

Page 67: Characteristics of a packed distillation column for on

61

counting pulse that activates the SN74120s. This is because

the 4-bit counters are wired as ripple loOk ahead counters.

The SN74109 also synchronizes the first pulse after the

counter clear signal with the start counting pulse. The

SN744120 chips are activated by a pulse (low-high-low),

which is achieved using the monostable SN74123 (TTL Databook

1981).

Pulse trains from the beer, reflux, distillate and

coolant meters passed through a SN74120 before going to the

16-bit counters which consist of four 4-bit (SN74161)

counters wired as ripple lOOk ahead counters (figure 8).

After a 10 s time period the counters stop counting and

are ready to be read by the microcomputer. Again the 16-bit

count has to be handled as two 8-bit counts. The 4-bit

counters are taken in pairs and the data lines connected to

a tri-state buffer (SN74244) (TTL Databook 1981), which in

turn is connected to port A of the VIA in figure 5. A

tri-state buffer acts as an open circuit for each data line

except when it is activated. This enables the CBM to read

each pair of 4-bit counters in turn through the same VIA by

signalling the SN74244s. If the least significant 8-bits

(LSB) of say the reflux counter are first read into the CBM,

followed by the most significant 8-bits (MSB), the total

Page 68: Characteristics of a packed distillation column for on

62

COUNTER CLEARS (f i g 5) PULSES (fig 7)----------------------------------------------------------~

DATA LINES { ____ ~ ( fig 5)

1"5V ..JQ. ENT L GND ful' ENP~t5V

r---------------------~I~I 0 --12 A * A 3

t

15V r---------------------...:1=-i3 O. ~ B 4 NC

r------------------~::!..I Oc __ C 5 20 Iq, r-----------------~14:!..1 0 0 rt D 6

VCCGNC11' ~ RC CK:4-_...--2 ---

CONTROL LINES lfig 5)

~ 2Y4 __ 2A4 ~ r6 VCC CLR °1------......

~ 2Y3 * 2A31L-1-..5. 2Y2 <;t 2A2~ .......... ~~V"""<""::":-:--:: ___ ~ ~++_3~ 2YI <;t 2A1 17 T5V 69

H+f-+--,1.=j2 IY4 ~ IA4 8 L GND ~" 14 IY3 IA3 b ~ ENT N 7

1

'--________________ ---LI Wi OA "k. ENP~ H+-jf-.+.+-+--,1l£l6IY2 1A2 ~4 ~

l '--__________________ ---L12~ a -- A 3

H+f-+-+--I-l--.2:18>!jIYI 13 • ~ B 4 NC IAI L--------------------~ac ~ C 5

rl9 2<; IG l 14 00 I'- D 6

,.--li. R t. CK'<l--=-2--+------<i 16 CLR P----!-~ (VCC I

t5v t 5V

t5V -l9 l20 I Of' L GNDIilI"

L..-b.L ENT r<) ENP~ VCC 10 r-----------!..WII a :ft:

GND811' 12 aA

__ A 3 e-2 2Y4 2A4/lL-J I 13 a 1O 8 4 ~ 2Y3 N 2A31!L-JW3 OC <j= C 5 NC ~ 2Y2 fl:: 2A21 14 aD I'- 0 6

~ RC CK;t-,.2~+--3 2YI <;t 2AI 171 r6 CLR

'--____ -"12"'1IY4 <;t IA48 VCC I

'--____ ---'1.:!l4 1Y3 ~ IA3 ~ ..... t5V t5V L-______ ...!12.j6 IY2 I'- IA2 ~ -.-

'--_______ -"18"'lIYI IAI ~ )$ L GND lm

J ~ 2(; I/; ~ ---1Q. ENT ENP~ 1 . , L-------------------~II!..jaA <;t A 3

L-_________________ ~12::..J Qa '=" B 4

L-___________________ ....!1~3 Oc ~ C 5 NC

'--____________________ !2.I14 a ~ 0 6

NC~ R~ I'- C K:~2--...J t5V ~ VCC CLR I

Figure 8. counters and tri-state buffers

Page 69: Characteristics of a packed distillation column for on

63

count is given by:

total count = LSB + 256 x MSB

Multiplexing

Port B of the VIA in figure 5 is used control all the

SN74244s, the analog switches, and four lines to operate

relays for proposed automatic control of the column. The

total number of control lines needed is greater than the

seven lines of port B available (since PB7 is providing the

square-wave timing cycle). In order to multiplex these

lines, the BCD to decimal decoder (SN74145) and the 3 to 8

line decoder (SN74138) are used (TTL DataboOK 1981); figure

5 shows the wiring. SN74145 has open-collector outputs that

can sink up to 80 rnA of current. Pullup resistors of 1 0

Kohm are used to tie the outputs high when not switched on

(except pin 6 whiCh has a 2 kohm pullup resistor and drives

all the counter clears).

Table 12 gives the address ar.d function of all the

decoder outputs.

Page 70: Characteristics of a packed distillation column for on

64

Table 12. Multiplexing address used with the command POKE(O, Address) . ------------------------------------------------------------

Address

o 1 2 3 4 5 6 7 8 9

1 1 26 42 58 74 90

106 122

Function

Control relay (not used) Control relay (not used) Control relay (not used) Control relay (not used) Analog switches Clear counters and 10 s timing LSB Feed meter MSB Feed meter LSB Coolant meter MSB Coolant meter No state (All outputs off) LSB Reflux meter MSB Reflux meter LSB Distillate meter MSB Distillate meter Condensate meter, 8-bits only Unused 8-bit counter Clear 8-bit counters

------------------------------------------------------------

Page 71: Characteristics of a packed distillation column for on

65

COLUMN CONSTRUCTION

The dis~illation plant was constructed in an unused

grain eleva~or. Figure 9 shows the column ascending through

the building. Locally available pipes and fit~ings were

used for column construction and piping. Insulation was

used to decrease heat loss from the column surface. The

~emperature sensors were placed in copper sheaths and

screwed into holes in the column. These copper sheaths may

have caused a temperature gradient between ~he vapour and

column wall ~emperatures.

The column and reboiler (figure 10) were built in an

enclosure with elec~rical equipment outside to reduce

explosion hazard due to e~hanol vapour. Figure 11 shows

the datalogger outside the enclosure. The CBM screen

(figure 12) continuously indicates the temperature of each

sensor with T1 at the top of the column (T23 and T24 not

connected and T14 and T17 were faulty). The counters C1-C6

indicate the number of pulses received from each flow meter

in 10 s. The time is shown at the top of the screen.

Page 72: Characteristics of a packed distillation column for on

66

Figure 9. View up the distillation column

Page 73: Characteristics of a packed distillation column for on

61

Figure 10. Reboiler and column in explosion proof enclosure

Page 74: Characteristics of a packed distillation column for on

68

Flgure 11. Dat.alogger

Page 75: Characteristics of a packed distillation column for on

69

l31617 2335 2 3 : ~~:~ fi~ : ~a:1 = 77.5 T15 = 96.9 T 4 = 77.7 T 16 = 98.3 T S = 77.9 T17 = 62.2

, auto

T 6 = 78.5 T18 = 98.9 T 7 = 88 T19 = 99.1 T 8 = 84 T28 = 99. 3 T 9 = 91. 6 T21 = 99. 5 T 18 = 93.3 T22 'i. 97 • 4 T 11. = 94. 3 T23 .. 64 • 9 T 12 = 9S. 3 T24 = 64.7

distillate out = 18.5 accumulator = 38.9 cond in = 28.9 cond out = 41.3 cold beer = 35.2 hot b~~r = 85.9

c1 = 6S c2 = 3S c3 = 1282 g~ : is 06 • 2

...

Figure 12. Screen of the CBM snowing temperatures and flow rates

Page 76: Characteristics of a packed distillation column for on

70

EXPERIMENTAL PROCEDURE

Before collecting data it was necessary for the column

to reach steady state. After a cold start the temperatures

were monitored on the screen of the CBM. To have a

distillate of 180 proof, it was necessary to maintain the

top of the column at about 78 C (Hirata ~ ale 1975). Once

some ethanol had been collected in the accumulator at the

top of column, the reflux rate was adjusted until the

desired temperature was obtained. The reflux rate and the

distillate rate could both be monitored on the CBM screen.

Some problems were encountered with the float switch in

the reboiler. Vapour loc~s in the float housing caused

flooding during the warm up and venting to the atmosphere

was necessary. Vapour in the distillate line caused erratic

flow measurements. A continuous flow of liquid was obtained

by restricting the flow outlet, causing a head of llquid in

the distillate line.

The time ta~en for the column to become stable was

approximately 20 min. On each run, however, the column was

operated for several hours.

Page 77: Characteristics of a packed distillation column for on

71

RESULTS

The CBM recorded data on cassette tape once every

minute. These data were averages of all the temperature and

flow readings taken during that minute. Appendix E gives a

printed sample of data collected over a two hour period.

The column had been running for 2 h before the sample was

taken. Each page of Appendix E shows 5 min of collected

data with the mean and standard deviation for that perlod.

At the end of the table an overall average and standard

deviation are given.

As expected, the temperatures increase on moving down

the column (T1-T22) as water becomes the dominant component.

A large standard deviation indicates that the temperature

changed during operation. Sensors T3 and T9 were located

directly below the reflux return point and feed pOint,

respectively. The reflux from the accumulator maintained a

consistent temperature (ACCUMUL) during the 2 h period as

did the feed temperature (HOT BEER). These incoming liquid

streams seem to have stabilized T3 and T9, proving that many

of the column temperatures were varying while running and

that the large standard deviations were not due to the

erratic performance of the data logging system. Sensors T1

and T2 were above the packing and measured vapour

Page 78: Characteristics of a packed distillation column for on

t.emperat.ures.

reflux rat.e.

72

These t.emperat.ures were used t.o set. the

All t.he t.ables in Appendix C refer t.o dat.a collect.ed on

August. 24, 1982.

August 21, 1982.

Appendix D gives the data collect.ed on

In each case, measurements of dat.a for the

feed, condensate, and distillate flow rates were t.aken

manually. These results could be used t.o check the

measurement.s made by the data logger.

Flow rates

For the August. 24 results, t.able C1 gives a mean feed

rate (FEEDRATE) of 1.338 Llmin recorded by the data logger;

this rate compares well wit.h the mean flow rate of 1.335

Llmin from table C2, which was based on readings taken

manually from t.he meter dial. A third measure of flow rate,

calculated from the change in feed tank dept.h, indicated a

much higher flow of 1.52 L/min. The same result. occurred

for August 21, as shown in tables D1 and D2. After the

tests were completed, the reason for this discrepancy was

det.ermined t.o be solids accumulat.ed in t.he meter.

rate was at the low end of the meter's range.

The flow

Tables C3 and D3 give the dist.illate flow rates, which

compare well with average flow rates recorded and shown in

t.ables C1 and D1 (DISTILL).

Page 79: Characteristics of a packed distillation column for on

73

The reflux flow meter used was the same type as the

dlstillate meter. By dividing the reflux flow rate (REFLUX)

by the distillate flow rate (DISTILL), the reflux ratio is

obtained (RF RATIO). The reflux ratio has a standard

deviation greater than that of either the distillate or

reflux, caused largely by the reflux ratiO being defined as

reflux divided by distillate. During operation the reflux

rate remained reasonably constant whereas the distillate

flow rate could, at times, almost approach zero causing a

large reflux ratio.

The condensate flow rate measurements from the reboiler

shown in tables C4 and D4 indicated that condensate flow

meter measurements (CONDENSATE) were low. This could be

expected because the flow meter was operating below its

minimum recommended capacity.

Energy

From the condensate flow rate, it is possible to

calculate the energy being used by the column. For both

August 21 and 24 the main steam pressure was 290 kPa

absolute. If the condensate is considered saturated, then

energy given to the system is 2167 kJ/L of condensate.

Using the measured data from tables C4 and D4, the rate

of heat input required on August 21 was:

Page 80: Characteristics of a packed distillation column for on

74

ra~e of hea~ input = 14.4 kW.

and on the August 24 was:

rate of heat input = 16.0 kW.

Energy used ~o produce a litre of distillate on Augus~ 21

was:

Energy/litre = 11014 kJ/L

and on Augus~ 24 was:

Energy/li~re = 6093 KJ/L.

Page 81: Characteristics of a packed distillation column for on

75

DISCUSSION AND RECOMMENDATIONS

The data logger seemed to work well. Further work needs

to be done on the calibrations of both flow and temperature

sensors.

The energy requirement of a conventional distillation

column is about 4900 kJ/L to convert 20 proof beer to 190

proof distillate (Eakin ~ ale "1981). On August 24 about

185 proof distillate was produced from 18 proof beer using

6093 kJ/L. Note that the energy requirement increases when

the feed proof decreases, as in the case of August 21.

If the feed is preheated, the design program indicates

more energy is needed for distillation. Table 7 shows that

for feed temperatures above 30 C the energy requirement of

the column increases rapidly. This seems to be due partly

to the increase of reflux with feed temperature (table 10).

With a higher reflux rate, more heat is removed by the

condenser (table 8) and so the energy required at the

reboiler increases. The design program also indicates that

the heat energy rate supplied to the column decreases with

proof (table 7). This seems to have been confirmed by the .

energy rate of 14.4 kW used on August 21 when the feed was

10 proof compared with 16.0 kW used on August 24 when the

feed was 18 proof.

Page 82: Characteristics of a packed distillation column for on

76

The actual performance of the column and the design

program prediction can be compared by using input data equal

to the measured values in Appendix C. The data in Appendix C

for the August 24 are used because the distillate flow rate

and reflux ratio recorded by the data logger had smaller

standard deviations than the data recorded on August 21.

The following results were obtained:

Input:

Feed proof: 18.07

Feed rate (L/min): 1.515

Feed temperature (C): 65.602

Distillate proof: 183.5

Bottoms proof: 0.1

Minimum reflux ratio multiplier: 1.5

Condenser fiT (C): 25.1

Output:

Total plates:

Rectifying plates:

Stripping plates:

Reflux ratio:

Distillate rate (L/min):

Coolant rate (L/min):

Condensate rate (L/min):

15

7

8

3.5

o. 127

7.87

0.64

Page 83: Characteristics of a packed distillation column for on

77

Column diameter (cm): 9.95

These results compare reasonably well with those

Appendix C, except that the condensate and coolant rate

measured were lower than predicted. Better positioning of

the sensor measuring the coolant temperature from the

condenser may have given a larger ~T, which would decrease

the predicted coolant flow rate. The measured dlstillate

flow rate and reflux ratio compared well with thos~

predicted by the computer model.

The rectifying section was 3 m long, which, according

to the computer program, is equivaient to 7 plates. This

gives:

H.E.T.P. = 300/7

= 42 cm

and for the stripping section,

H.E.T.P. = 800/8

= 100 cm

These results are high compared with the manufacturer's

figures (25 to 40 cm), but it must be noted that the paCKing

diameter is greater than 10% of the column diameter. Better

results for the stripping section might have been obtained

if 1.5 cm paCKing had been used.

The flow meters in the data logging system produced

Page 84: Characteristics of a packed distillation column for on

78

consistent results, but better calibration is necessary.

For further operations, it would be desirable to run the

column with the same feed and distillate proofs but vary the

feed temperature to see how this affects the steam

requirements.

to be devised.

An improved method measuring steam flow needs

Little attention was given to the bottoms product and

bottoms flow rate because of difficulties 1n measuring flows

from the solenoid valve. Using a continuously overflowing

weir from the reboiler would simplify flow measurement.

Running the bottoms product into a tanK would also be a

feasible method of data collection. All the flow rates could

be accurately measured electronically with tanKS on load

cells.

Page 85: Characteristics of a packed distillation column for on

79

CONCLUSIONS

The distillation column worked in a way that was

expected from the design. Alcohol of over 180 proof was

produced with an energy requirement that agreed wi~h

available literature.

The da~a logger proved reliable enough ~o record da~a

~ha~ could be used for fur~her study.

The design program and the limited data available

indicate ~hat no energy saving advantage is obtained by

preheating the feed to a conventional frac~ionating

dis~illation column that is separating an e~hanol-water

mixture. In fac~ preheating feed seems to be de~rimental.

Page 86: Characteristics of a packed distillation column for on

80

REFERENCES

Bothast, R. J., and R. W. Detroy. "What is alcohol? How is it made?" Proceedings of regional worKshop, Alcohol and Vegetable oil as Alternative Fuels, Raleigh, NC, April 7-9, 19&1; Sacramento, CA, April 21-23 1981; Peoria, IL, April 28-30, 1981.

Brown, G. G., D. Katz, A. S. Foust, and R. Schneidewind. Unit Operations. John Wiley & Sons, Inc., New York, 1950.

Commodore Business Machlnes, Inc. CBM User Manual, Model 2001-16, 16N 32, 32N. Professional Computer. 1st ed. CBM, Santa Clara, CA, 1979.

Coughanowr, D. R., and L. K. Koppel. Process Systems Analysis and Control. McGraw-Hill, New York, 1965.

Denn, N. M. Process Fluid Mechanics. Prentice-Hall International Series, Englewood Cliffs, NJ, 1980.

Department of the Treasury. Bureau of Alcohol, Tobacco and Firearms. Gauging Manual. Embracing instructions and tables for determining the quantity of distilled spirits by proof and weight. ATF-P5110.6 (11/78). U.S. Government Printing Office, WaShington D.C., 1978.

Eakin, D. E., J. M. Donvan, G. R. Cysewskl, S. E. Petty, and J. V. Maxham. "Evaluation of Ethanol/Water Separation Process." Fuel Alcohol and Gasohol U.S.A. 3, N0.9: 13-18, September 1981.

Ensminger, H. E., and C. G. Olentine, Jr. Feeds and Nutrition Complete. The Ensminger PUblishing-Gompany, Clovis, CA, 1978.

Hirata, M., S. Ohe, and K. Nagahama, Computer Aided Data BOOK of Vapor-Liquid Equilibria. Kodansha Scientific BOOKS, Kodansha Ltd., 12-21 Otowa 2-chome, BunKyo-Ku, TOkyo, 1975.

Intersil, Inc. 1981.

Data Book. Intersil, Inc., Cupertino, CA,

Page 87: Characteristics of a packed distillation column for on

81

Maloney, T. J. Industrial Solid-State Electronics, Devices and Systems. prentice-Hall, Englewood Cliffs, NJ, 1979.

McCabe, W. L., and J. C. Smith. Unit Operations ~ Chemical Engineering. 3rd ed. McGraw-Hill, New York, 1976.

National Semiconductor. Linear Databook, National Semiconductor Corporation, Santa Clara, CA, 1980.

Perry, J. H. Chemical Engineers Handbook. 2nd. ed. McGraw-Hill, New York, 1941.

Rockwell International. R6500 microcomputer system hardware manual. ROCkwell International, Document No. 29650 N31, August 1978.

Selby, S. M., and B. Girling. Standard Mathematical Tables. 14th ed. The Chemical Rubber Co., Cleveland OH, 1965.

Texas Instruments, Inc. Engineers. 2nd ed. TX, 1981.

The TTL Data Book for DeSign Texas Instruments, Inc., Dallas

Williams, L. A. "The Production of Alcohol for Fuel." proceedings, Biomass Alcohol for California: A potential for the 1980's. University of California, Davis, CA, January 18, 1980.

Page 88: Characteristics of a packed distillation column for on

82

ACKNOWLEDGEMENTS

I would like to express my appreciation to Dr. Richard

Smith for all his help on this project. I would also liKe

to thanK Dr. Harold SKanK, Jonathan Chaplin, James Andrew

and Don Schultz for their help with the experimental worK

and Gillian Smith, Kevin CmeliK, Dennis Jones and Carol

Hansen for their help in producing this thesis.

Page 89: Characteristics of a packed distillation column for on

83

APPENDIX A:

DESIGN COMPUTER PROGRAM LISTING

Page 90: Characteristics of a packed distillation column for on

10 HOME 20 A$ : "/11111 " 30 B$ : "1111 .1111 " 40 C2$ :" ":C$:" " 50 E$ : " 11.111111" 60 D$: CHR$ (4)

84

70 F$ : "11/1 /1.11/1/1 /1.11/111" 80 G$ : " MIN: /1/1#.## MAX: ###.#11" 90 H$ : " MIN: ###.## MAX: ##11.#/1" 100 IS : "MIN: ##.#/1# MAX: #/1./1##" 110 PRINT D$;"BRUN PRINT USE" 120 PR$: CHR$ (9) 130 DEF FN F(X) : E + X * (A + B * X + C * X * X + D * X * X * X) 140 DEF FN F1(X) : * X)

A + X * (2 * B + 3 * C * X + 4 * D * X

150 DEF FN F2(X) : 160 DEF FN LA(X) : 1315.369 * X * X * X 170 DEF FN P1(X) :

2 * B + X * (6 * C + 2254 - 974.047 * X

12 * D * X) 1275.2 * X *

X * X - 463.03 * X * X * 999.991 - 0.7603 * X + 4.4518E

X +

3 * X * X 180 X + 190 X 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410

DEF FN P2(X) : 1305.51 - 4.155 * X - 1.697E - 3 * X * 1.3118E - 4 * X * X * X - 4.135E - 7 * X A 4

DEF FN TB(X) : 99.97286 - 103.015 * X + 199.5292 * X *

PE : 793.7:PW : 1000 PRINT "FEED PROOF" INPUT" MAX: ";FM INPUT" MIN= ";FP INPUT "# OF ITERATIONS (MAX 10) ";J2

F5P = FP FV = (FM - FP) / (J2 - 1)

PRINT "" PRINT "FEED INPUT " INPUT " INPUT "# OF

FIT = FT

TEMP" MAX= ";FH MIN= ";FT ITERATIONS (MAX 12) ";L2

FC = (FM - FT) / (L2 - 1) T = (40 - 6 * (L2 + 1) / 2)

PRINT "" PRINT "FEED RATE" INPUT" MAX= ";FM INPUT" MIN= ";FR INPUT "II OF ITERATIONS (N.B. PAGE EACH) ";02

SFS = FR FS = (FM - FR) / (02 - 1)

Page 91: Characteristics of a packed distillation column for on

85

420 PRINT "" 430 INPUT "DISTILLATE PROOF <194 : ";DP 440 INPUT "BOTTOMS PROOF : ";BP 450 INPUT "REFLUX PRODUCT (CONS*RMIN) CONS: ";U 460 PRINT "" 470 PRINT" CORRECT DATA (YIN) "; 480 GET X$ 490 IF X$ : "N" THEN HOME: GOTO 210 500 IF X$ : "Y" THEN GOTO 520 510 GOTO 480 520 PRINT 530 PRINT 540 PRINT "CALCULATING" 550 PRINT 560 DIM NP(J2,L2) ,NS(J2,L2) ,NR(J2,L2) ,R(J2,L2) 570 DIM Q1(02,J2) ,Q2(02.J2) ,Q3(02,J2,L2) ,Q4(02,J2,L2) 580 DIM UMIN3(02) ,U1MAX3(02) ,U2MIN4(02) ,U3MAX3(02) 590 DIM DI(02),D2(02) 600 FOR J : 1 TO J2 610 NP(J,O) : FP 620 NS(J,O) : FP 630 NR(J,O) : FP 640 R(J,O) : FP 650 FP : FP + FV 660 NEXT 670 FOR J : 1 TO L2 680 NP(O,J) : FT 690 NS(O,J) : FT 700 NR(O,J) : FT 710 R(O,J) : FT 720 FT : FT + FC 730 NEXT 740 FOR ° : 1 TO 02 750 FP : F5P 760 FOR J : 1 TO J2 770 Q3(0,J,0) : FP 780 Q4(O,J,0) : FP 790 FP : FP + FV 800 NEXT J 810 NEXT 0 820 FR = SFS 830 FOR 0: TO 02 840 FT = FIT 850 UMIN3(0) : 1E6 860 U2MIN4(0) : 1E6 870 DICO) = 1E6 880 Q(O) = FR

Page 92: Characteristics of a packed distillation column for on

890 FOR L = 1 TO L2 900 Q3(O,O,L) = FT 910 Q4(O,O,L) = FT 920 FT = FT + Fe 930 NEXT L 940 FR = FR + FS 950 NEXT 0 960 L = 1: J = 1 970 FP = F5P:FT = FIT:FR = SFS 980 VE = DP 990 MASS = FN P2(DP) 1000 GOSUB 2010

86

1010 XD = X:PD = FN P2(DP) / 1000:MD = M1 1020 GOSUB 1830 1030 X = .4 1040 YD = XD 1050 FOR I = 1 TO 15 1060 K = FN F(X) - YD + (XD - X) * FN F1(X) 1070 DK = (XD - X) * FN F2(X) 1080 x = X - K / DK 1090 NEXT 1100 R1DMIN = (XD - FN F(X» / ( FN F(X) - X) 1110 VE = BP 1120 MASS = FN P1(BP) 1130 GOSUB 2010 1140 XB = X:PB = FN P1(BP) / 1000:MB = M1

·1150 VE = FP 1160 MASS = FN P1(FP) 1170 GOSUB 2010 1180 XF = X:MF = M1:PF = FN P1(FP) / 1000 1190 LFAN = FN LA(MF) 1200 Q = 1 + 4.2705 * ( FN TB(MF) - FT) / LFAN 1210 GOSUB 1830 1220 IF Q = 1 THEN X = XF: GOTO 1260 1230 GOSUB 1950 1240 IF X < 0.0966 THEN GOSUB 1890: GOSUB 1950 1250 IF X < .03 THEN X = XF / (1 - Q) / (8.538233 + Q / (1 - Q» 1260 GOSUB 1830 1270 X1F = X 1280 Y1F = FN F(X) 1290 R2DMIN = (XD - Y1F) / (Y1F - X1F) 1300 IF R2 < R1 THEN R2 = R1 1310 R = U * R2DMIN 1320 PRINT "FEED PROOF = ";FP 1330 PRINT "FEED TEMP = ";FT 1340 PRINT "Q-VALUE = ";Q

Page 93: Characteristics of a packed distillation column for on

87

1350 PRINT "REFLUX RATIO = ";R 1360 MR = R / (R + 1) 1370 CR = XD / (R + 1) 1380 X2F = (XF * (R + 1) - XD * (1 - Q» / (R + Q) 1390 Y2F = MR * X2F + CR 1400 MS = (XB - Y2F) / (XB - X2F) 1410 CS = Y2F - MS * X2F 1420 X = 0.7 1430 Y = XD:M = MR:CO = CR:NP = O:NS = 1440 GOSUB 1760 1450 IF X < 0 THEN X = .02: GOTO 1440 1460 IF X < X2F THEN M = MS:CO = CS:NS = NS + 1 1470 IF X < XB THEN GOTO 1430 1480 Y = M * X + co 1490 PRINT "X= ";X;" Y= ";Y 1500 IF X < .030 AND X < X2F THEN GOTO 1540 1510 IF X < .03 THEN X = Y / 8.5382333:NP = NP + 1: GOTO 1460 1520 IF X < 0.0966 THEN GOSUB 1890 1530 GOTO 1440 1540 XA = X 1550 XSA = Y / 8.5382333 1560 SXB = (MS * XB + CS) / 8.5382333 1570 S = LOG ((XSA - SXS) / (XA - XB» 1580 NP = NP + ( LOG ((XS - SXB) / (XA - XSA») / S 1590 NS = NS + ( LOG ((XS - SXS) / (XA - XSA») / S 1600 NS = INT (NS + 0.5) 1610 NP = INT (NP + 0.5) 1620 PRINT "TOTAL PLATES= ";NP 1630 PRINT 1640 PRINT 1650 NR = NP - NS 1660 NP(J,L) = NP 1670 NR(J,L) = NR 1680 NS(J,L) = NS 1690 R(J,L) = ( INT (R * 10 + .5» / 10 1700 GOSUB 2060 1710 IF J < J2 THEN J = J + 1:FP = FP + FV: GOTO 1150 1720 J = l:FP = F5P 1730 IF L < L2 THEN L = L + l:FT = FT + FC: GOTO 1150 1740 GOSUB 2280 1750 END 1760 FOR I = 1 TO 10 1770 K = FN F(X) - Y 1780 DK = FN Fl(X) 1790 X = X - K / DK 1800 NEXT

Page 94: Characteristics of a packed distillation column for on

1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2110 2120 2130 2140 2150 2160 2170 2180 2190 2200 2210 2220 2230 2240 2250 2260 2270

NP = NP + 1 RETURN

A = 4.93561743 B = - 16.78600i63 c = 24.08939704 D = - 11.56818878 E = 0.06106287

RETURN A = 10.0338264 B = - 20.078264 C = - 1264.52485 D = 9143.73197 E = - 4.63182E - 5

RETURN FOR I = 1 TO 15

88

K = FN F(X) + (Q * X - XF) I (1 - Q) DK = FN Fl(X) + Q I (1 - Q) X = X - K I DK

NEXT RETURN

ME = VE / 200 * PE MW = (MASS - ME) I 18 M1 = ME / MASS X = ME I 46 I (MW + (ME I 46»

RETURN LDAN = FN LA(MD) LBAN = FN LA(MB)

FOR 0 = 1 TO 02 DR = F R * (MF - M B) I (M D - M B) * P F BR = FR * (MD - MF) I (MD - MB) * PF LR = R * DR VR = LR + DR BARV = VR - (1 - Q) * FR * PF Ql(O,J) = DR I PD Q2(O,J) = BR / PB Q3(O,J,L) = LDAN * VR I 60 Q4(O,J,L) = LBAN * BARV I 60

IF Q3(O,J,L) < UMIN3(0) THEN UMIN3(0) = IF Q3(O,J,L) > U1MAX3(0) THEN U1MAX3(0) IF Q4(O,J,L) < U2MIN4(0) THEN U2MIN4(0) IF Q4(O,J,L) > U3MAX3(0) THEN U3MAX4(0) IF BARV < DI(O) THEN DI(O) = BARV IF BARV > D2(0) THEN D2(0) = BARV

FR = FR + FS NEXT

FR = SFS RETURN

Q3(O,J,L) = Q3(O,J,L) = Q4(O,J,L) = Q4(O,J,L)

Page 95: Characteristics of a packed distillation column for on

2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400 2410 2420 2430 2440 2450 2460 2470 2480 2490 2500 2510 2520 2530 2540 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 2700 2710 2720 2730 2740

89

P RII 1 PRINT D$;PR$;"80N" PRINT "DISTILLATE PROOF= ";DP PRINT "BOTTOMS PROOF = ";BP PRINT "TOTAL NUMBER OF PLATES"

S = T - 1 HTAB S: PRINT "FP"; CHR$ (92);"FT";C$; FOR L = 1 TO L2 & PRINT USEA$;NP(O,L); NEXT : PRINT FOR J = 1 TO J2 HTAB T FOR L = ° TO L2 & PRINT USEA$;NP(J,L); NEXT : PRINT NEXT PRINT "" PRINT "" PRINT "RECTIFYING PLATES" HTAB S: PRINT "FP"; CHR$ (92);"FT";C$; FOR L = 1 TO L2 & PRINT USEA$;NR(O,L); NEXT : PRINT FOR J = 1 TO J2 HTAB T FOR L = ° TO L2 & PRINT USEA$;NR(J,L); NEXT : PRINT-NEXT PRINT "" PRINT "" PRINT "STRIPPING PLATES" HTAB S: PRINT "FP"; CHR$ (92);"FT";C$; FOR L = 1 TO L2 & PRINT USEA$;NS(O,L); NEXT : PRINT FOR J = 1 TO J2 HTAB T FOR L = 0 TO L2 & PRINT USEA$;NS(J,L); NEXT: PRINT NEXT PRINT "" PRINT '"' PRINT "REFLUX RATIO" HTAB S: PRINT "FP"; CHR$ (92);"FT";C2$; FOR L = 1 TO L2

Page 96: Characteristics of a packed distillation column for on

2750 2760 2770 2780 2790 2800 2810 2820 2830 2840 2850 2860 2870 2880 2890 2900 2910 2920 2930 2940 2950 2960 2970 2980 2990 3000 3010 3020 3030 3040 3050 3060 3070 3080 3090 3100 3110 3120 3130 3140 3150 3160 3170 3180 3190 3200 3210

& PRINT USEA$;R(O,L); NEXT : PRINT FOR J = 1 TO J2

90

HTAB T: & PRINT USEA$;R(J,O); FOR L = 1 TO L2 & PRINT USEB$;R(J,L); NEXT : PRINT NEXT PRINT "" PRINT "" FOR 0 = 1 TO 02 PRINT "FEED RATE (L/MIN)= ";Q(O) HTAB S: PRINT" FP DIST.RATE BOTT.RATE" FOR J = 1 TO J2 HTAB S: & PRINT USEF$;Q3(0,J,0) ,Q1(O,J) ,Q2(0,J) NEXT PRINT PRINT

C1(1) = UMIN3(0) I 4.1878 * 60 I 10 C1(2) = U1MAX3(0) I 4.1878 * 60 I 10 C2(1) = U2MIN4(0) I 2095.726 * 3600 C2(2) = U3MAX4(0) I 2095.726 * 3600 C3(1) = C2(1) 160 C3(2) = C2(2) I 60

HTAB S I 2: PRINT "COOLANT(L/MIN):­& PRINT USEG$;C1(1),C1(2) HTAB S I 2: PRINT "STEAM(KG/KR):­& PRINT USEH$;C2(1),C2(2)

" . , " . ,

HTAB S I 2: PRINT "CONDESATE(L/MIN):- "; & PRINT USEI$;C3( 1) ,C3(2)

D1(1) = 97.32 * SQR (DI(O) I 60) D1(2) = 97.32 * SQR (D2(0) I 60)

HTAB S I 2: PRINT "DIAMETER(CM):­& PRINT USEG$;D1(1),D1(2) PRINT PRINT PRINT "" PRINT "" PRINT "HEAT OUT (KWATTS)" HTAB S: PRINT "FP"; CHR$ (92);"FT";C$; FOR L = 1 TO L2 & PRINT USEA$;Q3(0,0,L); NEXT : PRINT FOR J = 1 TO J2 HTAB T: & PRINT USEA$;Q3(0,J,0); FOR L = 1 TO L2 & PRINT USEB$;Q3(0,J,L);

" . ,

Page 97: Characteristics of a packed distillation column for on

3220 NEXT: PRINT 3230 NEXT 3 2 4 0 P R I N T 1111

3250 PRINT 1111

3260 PRINT "HEAT IN (KWATTS)"

91

3270 HTAB S: PRINT "FP"; CHR$ (92);IFT";C$; 3280 FOR L = 1 TO L2 3290 & PRINT USEA$;Q4(O,0,L); 3300 NEXT: PRINT 3310 FOR J = 1 TO J2 3320 HTAB T: & PRINT USEA$;Q4(O,J,0); 3330 FOR L = 1 TO L2 3340 & PRINT USEB$;Q4(O,J,L); 3350 NEXT: PRINT 3360 NEXT 3370 PRINT 1111

3380 PRINT 1111

3390 NEXT 3400 RETURN

Page 98: Characteristics of a packed distillation column for on

92

APPENDIX B:

DATA LOGGER COMPUTER CONTROL PROGRAM LISTING

Page 99: Characteristics of a packed distillation column for on

93

100 print chr$(147);"Enter time of day as HHMMSS" 110 input "ti$";ti$ 120 print "Enter date as DDMMYYYY" 130 input "Date";d$ 140 print "Rewind programme tape and replace by empty data tape" 150 print "Ready?" 160 input "y or n";q$ 170 if q$="y" then goto 190 180 print chr$( 147) :goto 140 190 open 1,1,2,"distdat" 200 printIJ1,d$ 210 t=ti 220 print"" 230 p=36880 :rem via chipselect 240 0=37120 :rem via chipselect 250 poKe p+2,127 :rem port b output 260 poKe p+3,0 :rem port a input 270 poKe 0+11,192 :rem pin pb7 toggle 280 poKe 0+4,75 :rem load tlr-l 290 poKe 0+5,76 :rem load tlr-h 300 poKe 0+2,127 :rem port b output 310 poKe 0+3,0 :rem port a input 320 poKe 0,5 :rem clear counter 330 poKe 0,122 :rem 8bit counter 340 poke 0,11 :rem nostate 350 dim a$( 12) ,b$( 12) ,a( 15) ,be 15) ,a2( 16 ) ,b2( 16) ,ternp(30), tm$(21) 360 a$(1)=" 1":a$(2)=" 2":a$(3)=" 3":a$(4)=" 4":a$(5)=" 5" :a$(6)=" 6" 370 a$(7)=" 7":a$(8)=" 8":a$(9)=" 9":a$(10)="10":a$(11)="11" :a$( 12)="12" 380 b$(1)="13":b$(2)="14":b$(3)="15":b$(4)="16":b$(5)="17" :b$(6)="18" 390 b$(7)="19":b$(8)="20":b$(9)="21":b$(10)="22":b$(11)="23" :b$(12)="24" 410 for i=1 to 12 420 print"T";a$(i) ;tab(20) ;"T";b$(i) 430 next 440 print tab(4);"distillate out" 450 print tab(4);"accumulator " 460 print tab(4);"cond in" 470 print tab(4);"cond out 480 print tab(4);"cold beer 490 print tab(4);"hot beer 500 print"cl" 510 print"c2"

" " "

Page 100: Characteristics of a packed distillation column for on

94

520 print"c3";tab(20);"pressure" 530 print"c4" 540 print"c5";tab(10);"c6 550 for i=O to 15 :rem aid addresses 560 poke p,i :rem channal 570 pOKe p,i+16 :rem start conversion 5S0 poke p,i 590 poke p,i+32 :rem enable tristate 600 a(i)=peek(p+1) :rem read channal 610 next 620 pOKe 0,4 :rem analog switch 630 for i=O to 15 640 poke p,i 650 poke p,i+16 660 poke p,i 670 poke p,i+32 6S0 b(i)=peeK(p+1) 690 next 700 b2(12)=(a(3)-2)*S/253+75 710 poke 0,11 720 rem convert a to d readings to temperatures 730 for i= St011 740 a2(i-7)=(b(i)-2)*50/253+50 750 a2(i-3)=(a(i)-2)*50/253+50 760 next 770 for i=4 to 7 780 a2(i+5)=(b(i)-2)*50/253+55 790 b2(i-3)=(a(i)-2)*50/253+55 800 next 810 for 1=0 to 3 820 b2(i+5)=(b(i)-2)*50/253+60 830 b2(i+9)=(a(i)-2)*50/253+60 840 next 850 for i=12 to 14 860 a2(i+1)=(a(i)-9)*75/246+20 870 b2(i+1)=(b(i)-9)*75/246+20 880 next 890 for i=1t015 900 a2(i)=int(a2(i)*15)/10 910 b2(i)=int(b2(i)*15)/10 920 next 930 for i=1to 12 940 temp(i)=temp(i)+a2(i) 950 temp(i+12)=temp(i+12)+b2(i) 960 next 970 for i=13 to 15 9S0 temp(i+12)=temp(i+12)+b2(i)

Page 101: Characteristics of a packed distillation column for on

95

990 temp(i+15)=temp(i+15)+a2(i) 1000 next 1010 n=n+1 1020 for i=1 to 12 1030 print tab(4);z$;a2(i);tab(24);z$;b2(i) 1040 next i 1050 print tab(19);Z$;b2(13) 1060 print tab(19);z$;b2(14) 1070 print tab(19);z$;b2(15) 1080 print tab(19);z$;a2(13) 1090 print tab(19);z$;a2(14) 1100 print tab(19);z$;a2(15) 1110 tm=val(right$(ti$,2» 1120 if tm>54 goto 1500 :rem cheCK for 1 minute 1130 if ti-t<630 then goto 550 :rem checK for 10 1135 rem read counters 1140 poke 0,6 1150 c=peek(0+1) 1160 pOKe 0,7 1170 ca=peeK(0+1) 1180 c1=c+ca*256 1190 pOKe 0,8 1200 c=peek(0+1)

·1210 poke 0,9 1220 ca=peeK(0+1) 1230 c2=c+ca*256 1240 poke 0,26 1250 c=peeK(o+1) 1260 poke 0,42 1270 ca=peek(0+1) 1280 c3=c+ca*256 1290 pOke 0,58 1300 c=peeK(o+1) 1310 poke 0,74 1320 ca=peeK(0+1) 1330 c4=c+ca*256 1340 pOke 0,90 1350 c5=peeK(0+1) 1360 poke 0,106 1370 c6=peek(0+1) 1380 print tab(3);z$;c1 1390 print tab(3);z$;c2 1400 print tab(3);z$;c3;tab(28);z$;a(15) 1410 print tab(3);z$;c4 1420 print tab(3);z$;c5;tab(13);Z$;c6 1430 pOke 0,5:rem clear counters 1440 poke 0,11

Page 102: Characteristics of a packed distillation column for on

96

1450 s1=s1+c1:s2=s2+c2:S3=s3+c3:s4=s4+c4:nn=nn+1:t=ti 1490 goto 550 1495 rem write averages to cassette 1500 s1=int«s1/ nn 5):s2=int«s2/nn5):s3=int«s3/nn5) 1510 s4=int«s4/nn5) 1520 a$=left$(ti$,4) 1530 print/11,a$ 1540 for i=1 to 30 1550 temp(i)=int«temp(i)/n*105)/10 1560 printIl1,temp(i) 1570 temp(i)=O 1580 next 1590 print/11,n 1600 printll1 ,s1 :print/11,s2:printil1,s3:printil1,s4:prlntil1,c5 :printil1,c6 1610 printll1,nn 1620 s1=0:s2=0:s3=0:s4=0:s5=0:n=0:nn=0

Page 103: Characteristics of a packed distillation column for on

97

APPENDIX C:

DATA COLLECTED ON AUGUST 24, 1982

Page 104: Characteristics of a packed distillation column for on

98

Table Cl. Mean values of computer collected data

Sensor Mean S.D.

Temperature C T1 76.48 0·38359 T2 77.480 0.33523 T3 77.095 0.29159 T4 79.403 3.85890 T5 82.152 5.38040 T6 83.595 5.47800 T7 85.599 4.81210 T8 88.089 3.80770 T9 90.187 0.65957 T10 93.524 2.12630 T 1 1 95.177 2.71420 T12 96.705 2.57190 T13 98.255 2.02280 T15 96.745 1.22490 T16 98.401 0.53685 T18 98.330 0.40164 T19 98.677 0·35931 T20 97.539 0.95206 T21 98.370 0.49780 T22 96.367 0.40438 CONDo IN 37.855 0.78865 COND.OUT 62.955 1.89530 COLDBEER 36.116 0.53708 HOT BEER 65.602 0.99843 ACCUMUL. 51.610 0.73990

Flow rates L/min FEEDRATE 1. 3379 0.03698 COOLANT 3.4109 0.05737 REFLUX 0.57310 0.13620 DISTILL. 0.16029 0.02370 CONDSATE 0.41416 0.01564 RF RATIO 3.66110 0.59935

------------------------------------------------------------

Page 105: Characteristics of a packed distillation column for on

99

Table C2. Feed data August 24 1982

Time Meter Calculated Time Tank Calculated Proof Reading L/min Depth L/min

------------------------------------------------------------130127 2239.1 130215 9.3125 132931 2249.0 1.3668 133016 7.4375 1.6002 18 . 1 134326 2253.1 1.3416 134410 6.6250 1.5330 1 8 . 1

1.3081 1.3916 140250 2260.3 1·3383 140311 5.3750 1.5451

1.3143 1.4982 1.3183 1.5716

142145 2266.9 1.3415 142230 4.1815 1.5210 18.02 1 .3219 1. 4811 1.3349 1.5204 1 .3520 1.4699

Mean 1.3350 1.5151 lB.07 S.D. 0.0181 0.0565 0.046

------------------------------------------------------------

Page 106: Characteristics of a packed distillation column for on

100

Table C3. Distillate data August 24, 1982 ------------------------------------------------------------

Time Collection Time min/L

Calculated L/min

Corrected Proof

Lab Proof (samples)

------------------------------------------------------------1259 5.83 0.172 179.8 1316 6.23 o. 161 185.6 1330 6.27 0.159 186.8 1349 6.33 0.158 189.2 1410 6.83 o . 146 191 .2 1427 6.80 0.147 191 .4

Mean 0.1572 187.3 S.D. 0.0094 4.36

Table C4. Condensate data August 24, 1982

Time

1305 1319 1333 1350 1410

Mean S.D.

Amount Collected L

1. 30 1. 74 1. 49 1 .30 1. 24

Collection Time min

3.0 4.0 3.0 3.0 3.0

178.9

184.8

186.8

183·5 4. 12

Flow rate L/min

0.433 0.435 0.497 0.433 0.413

0.442 0.032

-----------------------------------------------------------

Page 107: Characteristics of a packed distillation column for on

101

APPENDIX D:

DATA COLLECTED ON AUGUST 21, 1982

Page 108: Characteristics of a packed distillation column for on

102

Table D1. Mean values of computer collec~ed data

Sensor Mean S.D.

Temperature C T1 77.194 1.2644 T2 77.859 1 .2230 T3 76.963 0.5852 T4 86.946 5.5831 T5 92.453 2.1148 T6 93.065 0.9377 T7 93.988 0.7243 T8 94.106 0.6851 T9 93.835 0.4323 T10 95.533 1.1197 Tl1 96.134 1.4123 T12 96.651 1.5371 T13 97.870 1.4801 T15 97.604 1.2115 T16 98.568 0.8631 T18 98.946 0.4554 T19 99.160 0.3356 T20 99.057 0.3607 T21 99.283 0.3330 T22 97.502 0.2874 CONDo IN 42.261 1. 2969 COND.OUT 64.840 4.1421 COLDBEER 37.393 0.5954 HOT BEER 85.363 1.0594 ACCUMUL. 53.205 3.0707

Flow rates L/min FEED RATE 1.3141 0.0288 COOLANT 2.5310 0.0766 REFLUX 0-3722 0.0192 DISTILL. 0.0876 0.0571 CONDSATE 0.3017 0.0158 RF RATIO 14.8560 57.8240

------------------------------------------------------------

Page 109: Characteristics of a packed distillation column for on

103

Table 02. Feed data August 21, 1982

------------------------------------------------------------Time Meter Calculated Time Tank Calculated Proof

Reading L/min Depth L/min _____ J ________________________________________________ ______

104000 2013.4 105225 2017.1 1.3419 112042 2027.1 1.3615

1·3101 123752 2054.0 1·3348 123752 13.0000 10 . 1

1·3339 1·3201

132954 2071.1 1.3291 133500 9.5000 1.4641 1·3281 1-3191 1.3181

134800 2017.85 1.3284 1 .3275 1.3193 1.3178 1.3166

142630 2090.0 1.3105 145500 4.4315 1.4929 9.2 1 .3081 1.2993 1.2841 1.2529 1 .2229

Mean 1.3165 1.4902 9.65 S.D. 0.0324 0.0243 0.64

------------------------------------------------------------

Page 110: Characteristics of a packed distillation column for on

104

Table D3. Distillate data August 21, 1982

Time Collection Calculated Corrected Lab Proof Time min/L L/min Proof (samples)

------------------------------------------------------------1035 12.6 0.0794 167 1 110 13.92 0.0718 180 1200 12. 1 0.0826 181 1239 12.28 0.0814 184.4 1316 13·00 0.0769 182.4 1412 12.50 0.0800 180.4 1445 12.62 0.0792 178.9

l"1ean 0.0787 179.2 S.D. 0.0035 5.65

Table D4. Condensate data August 21, 1982.

Time

1115 11 31 1149 1156 1240 1334 1350

Mean S. D.

Amount Collected L

1. 19 1 .44 1. 10 1. 08 2.48 2.40 2.30

Collection Time min

3.0 3.0 3.0 3.0 6.0 6.0 6.0

176.6

178.2

177.4 1 • 1 3

Flow rate L/min

0.397 0.480 0·367 0.360 0.413 0.400 0.383

0.400 0.040

-----------------------------------------------------------

Page 111: Characteristics of a packed distillation column for on

105

APPENDIX E:

COMPUTER DATA COLLECTED ON AUGUST 24. 1982

Page 112: Characteristics of a packed distillation column for on

1.0 o .-l

,"1",,-1",

.=s. .. ::. r"-

(.) I

I CI) (·oJ

.~N~~ ~NNmMoo~ ~-~~~ ~~~~~~a WW~N

~-mOO-MmNM~~m~ ~~ooooooM~~~aQMI

OO

MN

oo

..

-...

T-f (S)

II ('1.1

(,) ~t "'=j-

,' .... cr·. If) Cd ,--i (S:I

(~) ':S:I IS:. l:s:r ,-1

1:::;:1 ('.J • (".J "'1" ('~I lL1

... I~I

I~) ((I

.. ..

"....... II

.. ..

.. II

" "

.. ..

.. "

.. II

II ..

" "........

.. II

It (r', 1:S:1 "'T (I')

.. ..

-0::1-CoJ ~

oo:t ~ ("',J (",j (0

'.D (',J

00::1" "'1-

(",J ("oj (0 '. (I ' . .0 ("0.1 oo:j-

("oj (1", (0

(1", ;:: If) "'=t ':S) Lf)

T-f (I) IJ'I (f', (I~I (0

.,..... f'~1 (',J I:S:I (I') (',J

(I~I (',J f'~1 (',J .:s:. ',1") 0:' 1,.0 ',.0 (',J CO

(I) r '_ ('r~1 ... -t

([

.. ..

.. ..

.. ..

.. ..

.. II

.. ..

.. II

.. II

.. ..

.. ..

• ..

.. ..

.. -.:t "T' loJ:) r '-

(',1 f".1 W~~~~Qaaaa~~ro~ro~~~~~~~~~~ ......... ~

-~

• :::: r·.-

r"'-r·-. (0 cr·, (r',

(T', ,:r', CT', CI"", ,:r', 'I', ,:r',

(T',

(T', (r',

(T', 'J', (T

', ,:r', (,~, "/) (.) ',[I [,-, -

(.) •

• • (.)

~~~N~~~~~~N~~M MM~"""'MNMro~NNN~

00 1.11

.. ..

.. ..

.. ..

.. "

.. ..

.. ....

...................."

"'1" "'1'" 1.(1 0) r·-

':':;1 N~~~~QQ .............. Q

~~OO~OOm~~~~~~~~~N •• ~ ....... ~

.,...i r"'-r"-

r"'-(I) CT',

(1", (r', (T', CT', CT',

(1", CT', ,:r', (1", (T

', (1", ,:r', CT', ,:r', CT', (.-, '·0

f·) ',.0 ''''~' .......

(,~, •

• • (.)

(.) 00:1-(',J

(',J "1-.......

..-I "=:t ',(I r"-"'Ct (.) ....... '1

' (.) "=:t (.) [1") (.) "1-r··-r·,-(") l,-' ('.J CT',

(.) L

(,) ..

11 ......

II II

.. ..

.. ~

.. ..

.. ..

" III

.. ..

.. III

.. ""'T

' "t' r'o_ r"-(I) (',J

N~~~~aQ--Q~~OO~OO~~~~~~~nn~ ......... ~

-~

• ....... r·,., r"-

r"-(0

(1", CT',

CT', (T

', (T

', (T

', (T',

(T', (r', (r', (T

', (1", ,:r', ("T', .,.', (T

', (,.) ',r) (,~, '.D

[n ~-f

(.",

• •

• (".',

N~n N~~~~N-~"""'N"""'MMNN~M

"=:t n~"=:t~

~

Lf)

.. II

........

II ..

.. ..

.. ..

.. ..

.. ..

III ....

.. ... "=t" "=T f"-r·· ........ ( .. J

N~~~M~~QQQ~~OO~OO~~~~~~~M~~""'"

• ·m

-"=

:t •

--t r'·, .. r·· ... r·

o ... (f) (0 (0

(f', ',.', cr', (T

', I,),', .'T', (r',

(T',

(T', .:r',

(T', (T

', (f', (r" (I~' I,t")

(,)

1.(1 If) ,....., (I)

.. ..

II (~I

....... LI') "=:t 'J',

',.(I ',.0 (',J ....... '.1) .......

(',J (',J (,~, (.) ~

(,~, ((1

1,0

((I (0 ',.0

(',J ':1", r"-

Lr) .....

.... •

...

• ................. v

"1'" r"-f'.-

(o.j (o.j N~~~M0QOmQ"=:t~oomoo~~~~~~~Mn~ ......... ~

....... "=:t •

....... r,,-r"-r,.-(0

(r', cr', (r', cr', cr·, (T', CT', CT', CT', I)', cr', cr', cr', ,J', CT', cr', (,) ',0 (",) I,D l1") ~ (,~,

• •

• (.)

Q~M

~"""'MOO~N"=:t~M""'" M~MNNNro~-N~~~

....... r.f:'

••

••

If ..

• ..

.. •

...

................. "'1'" "'1'" r"-

0) (T

', ('.J N~~~~QQQ0Q~~OOmOO~~m~~~~M~OO-

• ·m

-M

~-f r"-r"-

r·,-(I) cr', ,::r', cr', (T

', IJ', (1", 'J', 'J', (T

', CT', CT', (r', fT

', (r', ,::r', ,::r', (.) "\) (.~, ',j) If') -

(.) •

• • (,~,

Z~--(J:::(t~

.LJ..I

.LJ..IO

I-i =, lLJ LLI ...J I-

t-_

J 1--I-

! D

LJ..I LLI =, CC Z

::':: • ...1 13: I

-•

• !XI j.".q ::::: 0::: (C

=, I-

! (i)

(t: W

~~~

~~...J...JI-~O:::

F-

':S) T

.... .: ',j ('I') li") 1,0 0

) C r', I:::;:,

... -1 ('.J Z

Z

.. J

1--,:,,:. Ltl

1=

' lL ((1

Z

1-1

...... ('.J (") "=:t li") ',0 r'·-

(I) (1"'1 -,-

i ............. ~-i ~-i .... i

-(".1 (",J (".J (:1

(:1 (:1

(:1 (

) I,Ll (:1

lL1I-I (:1

lL

1 '-~--

~-.. ,.--t-

t--I· -, I· .. · I"" 1·--

1---,.--

~-. to, .. 1---1-· ~-. ,._. 1"-,, t-

1--I')

'::' ,. j :r.: 'T I.l_ ,. j

Ct: f~ (

) f~~

Page 113: Characteristics of a packed distillation column for on

7 It'IE T1 T2

T4

9 Tlli 711 T12 71:3 "'--It::" f 1. ,_,

riG T1;:: ! 15i

T2(1 ~,-:",

~a::..1

T22 ,::OND. IH cOt·m. OUT ,::OLDBEEF: ~-fCIT :BEE~~ riCCUt'1UL. :=EEDF.:RTE COOLANT

1255 76.5 77.5 77.1 ,-: .. - ,~ ~::ICt ......

9~1. ~:::

30.9 91. :3 31. :3 9[1.5 95.:3 37. :=:

99. :~:

99.4 99. :3 39.4 33 99.4 97.2 :37.5 64.9

67. :3 52.1 .; ,~.-. i • .,.~

:3.49 ~:EFLIJ::':: • 56 :D I :;7 E .. L. . 19 ,::ONDSATE • 45 ~:F F.:Rl· I {] ::!. (11

76.7 77. :=~ -,-., .-, ;" J" II .::.

91. 1 91. 7 91. 7 30.7 96.6 9f::. 1 9~3. 7 99.4

99.4 99.4 99.5 ,~.~ .:. _' _ •• ,_I

99.6 97. :3 :37 II 5 66.5

C"'-' t:' ,-'.::.. '-' 1.42 :3.49 .57 .13 .45 :3. ~~14

107

1257

77.7 77.2 ~::9. 9 91.1 31.4 91.9 91. ~=; 90.6 36.4 9:=: II 1 51!::!. 6 39.4

99.4 :,':: '::--'-' .-39.4 99. :;: 39.4 37 11:3

35.9 .-~ . ~I'" . 1::1 !:".-: •. :' _'.:. II ,_,

1. 42

.61 1 ,~ . -'

3.14

76. :=! ~? ,-, ;' t • I:. 77 90.2 91 .::, ~ .. :,. • .L • .L

31.5 91. 4 90.6 qt:' ..., _" ,_'. J

97.? 51;:!. 5 99.4

99.4 99.3 99.4 39. :3 39.5 ':'7 .::. _, I • '"'-

:3::::. :3 .-t:" '-1

~I._f. ~=f

.- ..... ;::- {

52.5 1. 44 :3.49 .57 .2 .45

77. :3 -,,-: .-, ( ,='.'::' 77.4 9(1.5 31. 1 91. 1 91.5 91 D 5 30.7 35.9 97.9 9:=:.7 39.4 97.2 9::::.2

3:::;.4 37.3

96.:3 :~:~::. 1

.-",,? ,-, t:1 j" • .::.

5:3.6 1. 42 :3.49

t::"-, • ,_, i

.19 ,of ...

.'"'t'"'t

2.96

77. :=: 77.1:::! :::9. 12 9~). 96 91.12 311.5:::: 91.54 90.62 96. ~3;::i 97.92 9::::.6

9::::. (12 99.16 99.(1::: 39.22 9:::.96 99.22 97. (16 :37.9 66. :34 :35. :::6 67.42

:3. If. .295

'-rt:"t:" .. '::',_1._1

.14:=: "'I C,:r.of .:. If 1_'t_I""

II 152 1...,,-,

.' .... • r_'

.22::::

.207

.. (1:::4

.. :396

.179 • 1 • f145 .46

C'-I"" • ._f.;,: f

4q7 • _' I

.46

.. 6(17 C"-:t.'-

1& ,_'t' CI

• :::~74 1.055

52. 6 . 5::~:3 1 .. 425 ? . :3E -(1:3

.575 • ~~117:3

.. 191 :3. :3E-(1:;:

.45 6.7E-(1:3 :3. [1;.]7 • ~~1959

Page 114: Characteristics of a packed distillation column for on

T rt'1E Tl ..,...-. f~

T4 T5 T.·-: c-TT rEi T9 i 1 ~:1 Tll ~ i .-, ! .1'::'

T 1:3

r16

T19 T20 T21 T22 C:Clt'~If • I f'i cm·m. OUT

dOT BEEF.: riCCUi'1UL. FEEDF.:ATE COOLAt·iT

DI::;TILL. COt·iDSATE ~F ~:ATIO

77 7:3.1 77.1

91 90. ;:;; 91.5 91. 4 30.7 96.1 '~7 .~ -" ._" 9::;.6 99.4 97.7 3~::. 9 9:3.5 99

96.5

66.? :35.7 66.4 5:~! .. 5 1. 41 .:. .:.-:­._1. '_' ( .. 57 .1; .45 2.94

1:301 77.5 7==:.4 -:r"'" .-, f i •. ':1

90.2 91. 1 91. 1 91. 4 91.5 90.6

97.3 9:::.6 99.4 97.1 9:::.6 98.1

36.2

66.6 ·-,co .. -.;,._1. '=1

66.2 5:~:. ~:;

1.41 '-J .-.-:t ,~I •• .:, i C'~ .. _' (

1q . -' .44

108

..,.., .­I" i • C,

7;::. :3 77.4 30 31 31.1 91.4 91.4 30.7 95.9

99.4 97.4 3::::.7 9!::.4

96.5 3~=:. 4 66.4 '35.6 65.9 5:3.9 1. 41 :3.49

:::--, • '_' i

. 19

.44 3. (14

...,-, ,-, ;" ( . .:::. 7~:: .. 1 77.1 :'::9.7 30.9 91 31 . .:! 91.4 90.6 36

99.4 97.5 99

99.1

'3:::;.4 65. i:: :~:5. 5 65.9

1. :37 .3.49

.44 ::::. 1 ::::

77.4 -,.-.. -, 1:='. a::. 77.4 ::;9.6 91 91 91.5 91.5 3!~j. 6 95.9 97.3

99.4 37.2 3!:~. 5 51!'::. :~:

97.~ 9;::;.4 96.4 :3:::: .. 1 66 :35.6 65. :3

1 ~ :36 :3.49

.44 :3. 19

f'1EAr'~ 77.:34 ...,:-, .-,.-. ~. ':';a ~.::: --=,"""'1 .-,.-; ( • ~C;

91 31.42 91.44 3(1.64 35.94 97:t92 9~::. 66 99.4·

3::;. 74 9::~. 4

97. ~::6 ::.n:;.56 36. 4~=:

:35.6 65.94 5:3.54 1 • ~3::;9 '3.441

,=" •• -,-• • _'e,r: • • 1 ~::6 .441 ::::. ~:157

1:;. II. ~ 241 .13

.241

:1122 • ~i:::4

I-.Jt:"t::" • !o':'!._,._,

.114 • [145 .055 f1 .. 2:39 .207 .224

'-1'-','-... ':1.'::'=,

...... -• I' C·

'-::-:1-~

• ~·:tl~ .-, 1 ~

• .::. .&. J

.13

.071 ~416 • :3(15 .02:31

.-.1.,-.-,-, • ,::',=,.:" I

::!.5E-[r3 :3. 6E -~Z1~3 • 1 (n:i!:~

Page 115: Characteristics of a packed distillation column for on

Tl T2

T4

T6 ..,..-. ~{

Tl~3 "'--4 0{ f .1..1.

T12 "'!'"·f -, 1.1.·':'

:""oft:" , •• _1

T16

T19

"""-~"-f 1'::"'::"

,::OHD. OUT '::CILIiE~EEF: ;-1CIT :BEE~: nCcur·1UL. FEEDFATE COOLANT

IiI:::;TILL. !::Clt·.fI;~:;ATE

~:F ~:RTICI

?? :3 -,,-, .-: j t;:, •. .:,

77.5

90.9 91 91.4 91. :~: 3~~1. 5 95.5 .::-==' ~ _. i • I

99.4 '-r~ ~i

37. 1

96.4

.. -c- .-CI._'. Cr

:~:5. 4 64.7 C"'-I ~ '_"':' • .L

1. ~37 .-~ ,~,~

';". "+-' .- ..... • . :1 {

• 1 ~:: .44

1:306

'7":1 i ~ ~_~,. J.

-,~ ~"' ff.-'-'::"':' .:. ~_I J •. _1

9f:t. i 90. i:; 91 91 ~::9. 9 .:, .~ ,:, _" '""t. _.

97. :~!

99.4 :::"7-' C" _' I • '_'

99

9~=;. 6 96.7 .-,~ --. .;'1;" :a ,

64.9 '-Ie '=' .;'1._'. '_'

64.2 52.6 1 .: .. ::, . '-'-' .-, .-,..., '':'. '.:: ;' ~-,

:I ·_'1' . ...., • l f .... -, :I~'':' .-, .-, '':' .. ;,

109

i .-,.-,,-, J..':I~!f

??1 -,!-, .-, i' ~=f. ~ ""'70' "7 1 I II I ,-,t:'" -, ':',-'. ,. 30.6 3f1. !:~ 90.9 90.9 90 94.2 96.9 3~:!. -+ 39.4 37' • 1

:'"7-' ,:; _. J ._.

36.5

64.2 ,35.7 '-." !:" .:::-t. '_' ,....-.. -:f~. 1:1

1.37 :~:. 49

.44 2.95

1 ~3[1:=: --..- .-. :"' t •• ;:;

30.4 9~3. 5 9(i.6 90.6

9:3.9 96.0 'j;:~. :3 99. :~; 96.9

36. :;; ,-,~ ... .':1 f • "1'

6:3.5

64~7 52.4 i .-.-:t J. •. :.. "

:3.49 .57

1 ,:, • J._ .

• 4:3

-, .. - '-I I ~I. t:t 77. !::: 77.4 ~::: 1.6 9;':1. 1 }(i.4

30.4 30.4

35.9 37.9 99. :3 97 . :~~ '-~f-' "'":' :J~=t. i

9:=: .. 4

96. :3 '37

'-,E::" t:' ''::'_'. ,_t .-!::"

;::"-' e·-, .-. -!~ •. .:~

1. :36 :3.49 .57 :I 1 ::! .4:3 -r .-,.-,

~~ . .::~

r·1EAt·~ 76.96 ?~:~. ~]:=; '""?"'? ~,~, ; I # ._f~

9~:!. 5;:! 97.44

96.44 '37.52 64. ~36

64:162 52.6

:::.464

~ I-i ~ .. J. f:~ i

'&.-, .of II 4" .;:"t

3.143

~:;. II. .-,.-. # ,::..;.

.192 of .-,

;I l·;'r

.245

~ ;::91 .. 6;::7

.055

.241

. :~:;:~5

.274

-::":,.:' ~ ; "_1,_,

~167 .455 1. :~:46

II :3~1;::

.(1116 II ~]52 ';:.9E-(1:3

Page 116: Characteristics of a packed distillation column for on

~-I

I.L

T4

T6 T7 T,-, ! ':.

T9 Tl~3

Tl1 T12 T13 ..,.. -I c:­• l·_1

ri6 Ti:::: T19 T20 T21 T22 cm·HI. It·~ cm·HI. OUT C:OLD:t:EEF:

1310 77 .. 1

77.7 ;:!~71. ~=;

~:~9. 7 9(1. 1 30.4 90.4 ;39.9 92.7 95. :~: 97.6 I~f~ 1 -' -' .....

9:::.2 9~::. 2 '":{7 ,:, -', .-' 96 :36.9 61.7 :35.6

1311 ..., .. - c.­f Cad ,_I

77.7 -,-, t:" fi"ll ,_i

""r::' ~ f _'. (

~=;!:~. 9 !':;9 .. 9 9t~1. 1 90. 1 9[1. 1 92.5

::.-' .-. _' J •. .:.,

99.1 37. 1

9;:;.6 3~3. 7 ':'7 I:; _' I .. _'

3;3;1 5 96.4 :36.9 '-01 '-1

Cil • .::.

no

1312 76.4 77.5 ,/7 of ; i • J.

79 .-,..., .-, '::i' .. ~

90.1 90 9[1

94.4 97

-,-, '=" ;:s f • ,_,

3:;:. ::: 9:::. 7 39.1

:36.6 51

-,-, '-1

ft" •. ::,: -,..... -=-- ;:' . ,.'

!-'r-~ ~ ~':I:l .. (

9(1. i 90.1 90.2 92.7 95.1 97.5

99 3::~. 9 39. 1

39 37

61. ::' -, c:- -:"_'. CI

-.. - .-, t CI,. . .:, -,..., .-, ;" ;" . .::. 77 -,,-. ,.-:( :=::1 C:

90.4 90.4 9~1 •. ~, :, .;1:' _' I A ,_,

39.2 39.~ 351• 1 39 . .:t 37 ... ::. ,-,~ .-, ;" I • ..:;,.

:54.4 '-It:" ,,-.':t._i. C:

;'1EAt·~ 76.52 -........ ,.- .-.( ( • ::'0 ;t-:"l .-: :- ;' • ~r

?5J.4 ::;7. :34 -1'-' -1.-

-:'.;::. I ":

9~1. 22 3tZ1.2 30.1 92.19 :'15 .. :3 37.54

-.~ ..I

"";:; ( • -=+ ::':=! 7::2 -" "-" .. , '-'

-, .. - -"':::":1. _-:t

-Ie::" .-:', __ i .. ~:I

,-,,-,!::" .. -.,:, ,':'I._~

.. :321

.-.. -~ II ::-t:1

. 154 • 1 ;::('

" '-' I ... t _i!=~

.1357

.: ,-.. --1 "'7!:r':l

~,---,

t ._:::::",::

~ .4 7 7 .. ;".12 1 ;I ~:~~

HOT BEER 65 64.3 54.8 54.8 54.8 64.86 .J83 ACCUMUL. 52.1 51.8 51.4 50.9 51.3 51.~ .464 FEED RATE 1.34 1.34 1.36 1.36 1.32 1.344 .0137 COOLAtH 3. 49 :3.49 F.:EFLIJ::·:; .. 57 .tol II I ~:;T I LL .. .. 16 .. -

.. .i.e· C:Clt·iII:::ATE II 4:~: ~:F F.~AT I CI :~: • 46

.57 • '=

• l·_i ';.-,

.. ~.":I .-. -:S~ .;.: .. ( i

:3. -+':::4 .. ~152 .. 57 .. 57 .. 577 .02 . 14 -II:"

• 1 _f -1 1 ~:~: 7 -1 2E -;.3:~: .. 4:~: .. 425: 1 :I SE -Cc~~ .-, ,-, . ..:: .. ':'

Page 117: Characteristics of a packed distillation column for on

r-i .-I r-i

(I)

C")

'7:;:' (~~)

(0)

'·.0 .. t

I I

(,) • r"-

r···· r·-c'')

(,',! (1", (0

r··.· Ii')

,j-In "'j" (',j '·0 l() (''' .,_., ':j' ('oj ,:r', r···" cr', "1"

C',) III l U ,:;;)

.:::t r·· .. 1::1 ((I (0

--:1~

'";1" r·,.~

fl') '. I) (""', C

") ':

j

(';! (f', (.,) ',f! l('1

Lr:. r·-(::~I (0

(r'l (';1

... --4

,_.,

I, (I '-J' r·.·. W

('fJ 1.'lj .,--1 (1

', .1·.0 ".:1"

(") 't'-i"t"j-( ... j

,041:':;) ('~I 'It· C

d (") (0 1.1-'

".j" (,') 1.1",

I~:I ('~~I '.j-

I::~I I~·~....

.,-f

.: I") •

" .,

...... ,J "

.. 'II

or 'I

., ~

.. "

It "

.. ..

" ..

.. ..

.. ..

.. '"

,:s) .. r·· ... C'rJ

..

,".j '.(1 (,',

.. ,", 7 ,-.-, '.(,

"'t ,",] ':j"

't· '.(1

"'j" ,,,(, ..... ,

'~j' .... j

,-,', ,,'(, '·0

Z

':-1", ,~(r '·0

,:6 If) "r f.~ ((, ,:,:', li"" (,~, (r', Lf') ""i c") ("

j If) ,~~', .". G)

,~,:, Lh If') ~ ... ;":. ,:.:. lO (r', '1

' U,) (r.

" "

• •

" 'I

" "

• "

.. "

.. •

• '"

" ..

.."

""..

'" c~') "'7'

I, (I

I. (I f·t.f (,':' ttl 1,0 r·.-

r·· ... (f'l (r', .. "-4 T-i

'1-1

I:S:I I·i) ((I ((, (T

', r·,., (I) ((I ((I r .... ((J 1.(1 0:.1 "=:1-LI) -.:j-

(',j "

1'1 If', ~-..

~j" tI

:::::-: roo. r· ... r"'" r·· .• ee, cr·, ,r', ,'T', fr', (T', ,'T',

fr', .. T·, (1", ,'T', ,r·,

(T',

(T', 'I', cr·, (.", '.(1 '.",", '. ('r

[,-, ..... ,

(,':, •

• •

(,',

(1", ('.j ' . .0 .•• , If) r·· ... (I) (I) (I) (.,) C·)

'.1) ((, (0)

(,') r·· ... C':' ((I ( .. ) L() In

'. (I '1

' ':T', 'T

.........

'II".

~ ..

.. ..

" !S'

.. ..

• "

" ....

.. (,"

, "1' r·· .. (0

(',J C.j

(.) r·-(0

r·· .. · ....... .,...i

.............. , .•• (S', '·D

(,~, (T', (1", '·.0 ((I o~, 0) '·ft r·· .• L() (0

":1" Ii) "1' ('.j •

• L,-' ~ .• ' t·

• ....... r·· ... r·.· r· ... ((,

(T',

fT', ''T',

(T', (r', ,'j", (r·, (1", .-r., ''T', 'I', ,I', cr·, a·, fT

', CT',

(,~, '. ('I (.,) ' . .0 In ...... ("',

• •

• (.)

(0 ......

0) ' . .0

C·) r··..

(f', r··· -::1" LI) ..... ,

(f', ':t' '. (I (T', '. I) (,') r· .. tr") (,) (.) •. ". (T',

j"'-or...."

"II

II •

II ..

" II

" II

" "

" ..

(,) ':t-r"-

r·· ... (',J (',1 C

,) r·· .• (0 r··-,:s:, .............. (-• .1 (".1 ,:::;:, ' . .0 co ,::r', CT', r"-

((I r··-((, '·D

r·· .• tf,) (0 '.1" Ii') "1' ('o

j •

• to ~ .• 7

• ....... )'.... r·· .. r·."

(I) (T', "

', ,'T', fr', ,'T', ,T',

fT',

(T', ,'T', ,'T', ''T', (,f', (T

', (T

', (1", (1",

(,~, '. Cr (.", '.D L'-' ... ·

i C·) •

• • C,)

r··... (f', r·,-

(0 I·f' (r', .......

,u,",

(0 -.:1"'

If) (0 (i",

..-f ('~I

('IJ It) (0

(f'l tf:' I, (I (,~, :::i ':r',

_ L~'~I

........ ..".."..

It "

.. "

.. "

" II

• ""

• II

,,1.1.1 -.:1" r"-r·· ... t. ',1

I. I "

(.') r"-r"-

r"-cr·,

($:, ..... (',.1 ( .• J ,-, '.[., (0 CT', (1", '.[., r·." ((, 0

) '.J) r"-Ii') r··· tf':r to "1' ('.J

• • t,") ........ t·

• .,.. .... r·· ... r"-

r·· ... r··.·. ,"T', I~', (T

', (T', (T

', tJ", (r', (f", I~',

(T', (T

', IJ", 1 1'1 cr'l ',', (r', (,". 1,0

(t') t,o , .... ) .,. .... (t') "

" .. .: I)

~OO~~NMM

....... -m

m7~~~7~M ....... ~

~roOON~

~

'I • ..., ..

It ...

" •

II ..

,...

""....."

II •

" ..

II II

II (I')

"r:t ,,:t· r"-(I:' ("J

M~~~~OO-NN-~OO~~~OOOOoo~OO~OO~m7""'" •• m-~

• ....... r·· .. r· .. r"-r·· .. · 0

) (f', (f', (1", CI", (1", (f', (1", cr', ''T', (f', I),', I),', (f', ,:r', '::1", (.) '. (I (·"1 '·0

1.'-' ...... ('~I

• •

• (.)

mmmM~OO~ N~~~~m700~-~~~7~~ ~ ....... ~

m

..-.

II II

" II

...

.. II

• ..

• "

" ..

" "

.. ..

.. .. ."

" (·~I "T

r-.-1,.0 (,) 1 •. 0

M~~~oo~~--~m~oo~~oooo~oooo~~~mm-

. ·m-~

. , .... , r·-

r··." r···. r··... ((I a·, (1", a·, .:.r·, (f', (T

', (1", ,:r', (1", fr', (T

', ,'T', (T', (1",

(1", (,~, '. Cr (.,) '·D

L'") T

'i (,~,

• •

• (,~,

:::::: ~... (t~ L"~'::

• LLJ • l.LJ C

r ... ". =, LU

lLJ ...J •.••• -_.J 1-"-

1-1

C

' W ll.l =1 (t: z: ::.:: _1 (t: t-

• • ~Cf J.":Cf :::::: IX

'I ::' ... ·

i ((I 'I

W

~~~

~~...J...J~~~

:!'::: ,~;;) ... -

i ( •• J (.) Lf) '.,(, I)) (r', r:-,;:, ..... i

(',j :l: Z

_"j ~-

(.:, Llj C

' LL ((, :.: , .. -

. "'''i '>1 (.) 'o

j' tr) '.J) r"-CO (r', ~'i

...... , ............ i

....... T

'i .............. ("0.1 C·.] (\1 (7., C' ,=, ,=, C

) l LJ ':::' L.IJ ''''1

(:' LJ_

.... I·.. t·,,· ~ .... 1,-, I··

.... 1-'

~. t·"" 1

-' I .. •· t-.. 1-'" , .. -

~-. I .. •· t-· I·· , .... t-· r:.:r (J () ::r.: 'T.: L ' .. C) (~~

f~ (,,:, l'r:

Page 118: Characteristics of a packed distillation column for on

T5 76 .... ..., i (

Tlli Tl1 T12 T13 T15 r16

Tof ,-t f J...:.'

T2f1 T21 T22 COf·.j-D. I f·~ COt·iII. OUT C:CILI':BEEF~ ;-iCIT :BEE;;;: RCCUNUL. ;=EEIIF.~ATE COOLAHT r::EFLU;:-:; ]) I ~=;T I LL. CONDSATE ~:F F.:AT I ':1

......... { f

77.7 ::~1 • 4 :-. of .-, _~ J. •. .:~

91. :3

31. 4 9E1.6 95.7 97.3

99.5 97.1

-,.- .-, .:.reI. ~ 3~3. 2 95. :::;

'35.7 64.1 5200 1. :3? :3.49

t:"~

• ._" f ~ ....

• .L .'

4·-, · -.-, '-I~

.':1 .. '.:. f

1:321 77.1

77.7

90.9 91 91.2 91.2 9f).5 ,~.:1 r:' _' 1._' 37.5 9:3.6 99.5 96.9 9:::.2 97a9 51::::.4 96

96 ·-1t-. ,-, ';"':'" .:.:

64. ~3 52.4 1. :~:7 :~:. 49 • 5?

.~ .-, .-t~

:3. :36

112

-, .• - I-!

f Cl .. :.' ~-. I:' f " "_'

?7.6 :3~1. 7 3~:1. 6 9f1. ~:: 90.9 3(1. ;:~

30.2

'::,q.~ _. _' • -t

97.9 3:::. 1 37. :3

9,5.2

52.4 1. :37 :3.49

c.-:-. .. '-"=' .16

77.9 77.6 ~=;t1. i ;39. ;:; 90.4 90.7 9(1.6 30 9:3.7 36. ·5

37 37.3 97.7

36. ~3 3?7

.-;,t:" c:: _I._I ... _t

1. :~:7 .-, .-,-, .: •• '_' i

!::"-, .. '_' f

-Ie • .i ,_, .4.-, . .,.~

.-, '='= '':' •. _'._1

-,.... .-({ • Cz

79aG

90.4 9(1.5 30.4

35.9 ~:j7 ~:, _- I ._'

99.2 96.~

97.9 ,-,,-, .-, ;:t': ... .::;.

95.9

~52. 9 .-,c;- .~

.':t._l. -t

64.~ 52.4 1 . ~32 ,-, ·-1"""" ':" .. .::;" ~ ....

~ .:f{

.16 of .-,

.. """t~

f'1EAt·~ 76.94 77.94 ....,...., .- ~

{ { a CI'f

3~:1. 22 9(1. 7:=; 9(1.96 30. ;=i:=! 9(1. :32 34. :36 96 .. 9~=: 51::!. 4

36.94

96.44 37 .. 94

C'''':r -.,-, '_: ._~ •. _t,_:

·~~5. 54 64 52 .. 44 1 . :36:~: :~,.441 ..572

~ .- .J

~ 1 t:1~

.421 :3 .. 497

3.D. .114 .114 " ~355 ~-=.-,

• ( _I:::,

.415 ,-:'-,,-, .. .;:.:..;'::;::' ,-11-, ,~

• :J':'loof"

II 735 :I :354

.152 i 4 .f

~ -,. j.

~ 279 .-. · ..

:I''; j

.ild .-.:-,.-.

, ~..7'::'

Page 119: Characteristics of a packed distillation column for on

C""l r-l r-l

:~~;: :~;:

I.O't

1·0 'j

(.j T ..,t·

·N~~~0-~

N -~~~-

~~NNOOOO~-~W MWQ~

':: .. L,-I (0 0

) '::1 (I~I

":j~ ";:1-(,) ((I r·....

('~I (I) ',.--1

I~"I C

d I. C

l (.,)

or--.f

(T', ("'·1 (.) (.) ....... r .,~ (",)

-r-t U",

I (I)

• ,. ... of

1::;:1 1::::1 "T

II .... :t.

("j .r-f If)

" • !"O

("'.' (=') C

IJ

.. --t l"~1 ':.r] " ... " I.j:' ((I (\1 (=

) ('.

j.

,~;). Ll.l .. __ t

("-1 •

.. "

,,(,,1 (",1 II

.. "

Of

T-"

...... , •

., "

" "

.. ,.

or "

os ..

.. .. r"'-

I?::-' .. r··.,

IT',

..

..,j' ('.1 (I) 1.(1 (·oJ (0

1.(11·0 (0

1·0 (0

1.0

Col ('01 ('0.(

"t· (0 C(I (0

r··-...... -

2: (

I r·-

Tt 1·0 (0

((I cr·, 0

) ll') -

ll') 1.0 (.J ( .• J ··:t·

,::;:. 1.1') (.) 1,.0 lj') (,' •. 1 ('.J r· .. 1 . .0 ('., .:":;:.

(1': "

n "

II •

.. "

" •

" "

• ..

II "

• (,) (t~1 1,0 't' (*.j I::;'

LI.,I 1·0 r· .. r·-(0

(.) (0 (1", cr·, (r', ('.j C

,) '.(1 0) ' . .(1 0:, (0

CO '·0 (0 1 . .0 ('0

...... 1.0 ':t Col '

• I"') ,--, .• j' •

:::~:: r· ... r·.·. f·,.-r··· (('I '-(', ((', (r, (0

,J'I .: r·, ,-:r'1 ,'T', fT'1 (T

'I (r't (j't ,r', ,T

', (T',

(I~I ' .. 0

('~I f·O Lf-'

or .... '-'~I

" ..

.." j"

(T', f'.-

1·0 "'t ('~I '·· •. 1 ('.J r·-

r·.· c'

(·oJ '·0 ('.J C

·) (I) C')

((I (0) 1·0 (0

(('I ('f', (r" ('.1 r·-

("J ..

.. .."

..".....

."

II II ."

"......"

II ,,(.) (,) r··~ (:') (',1

(I~I (,) I.j) r· .. r·-

(0

T-I '·t (T

', CT', ,:r', T

.... (,.J ':t r·-I·C

t r .. r"-((1

1 . .0 r··. If) r·-(;., If') 'oj' .,. .. ,'

• • 1.0 ~'" ··t·

• T

.... r"'-r··.·. f'.-r"'-((I (I) (.:', 0

) I~(I ('1', (T

', (T'I (r',

1]"1 (T'I (1",

(T', (T

', (r't (T'1

(,) I,J) (t", I. C. If'', "·· .. 1 (,)

.. ..

.. ":r

(0 (I) r·· .• "':I "1" "1' -

r"-('I) r·-

' . .0 '. I) "1" ('oj ('r'l (,) .......

(,) r '.. C

') (,) ('0.( (T

'I ('.J -o:t r·· .• ('rj

.. ..

.. "

.. "

.. ..

.. ..

II II

.. •

.. ..

.. ..

" ..

(I) (I~I ":t' "1-(',J

C·)

1 • .(1 r·-r·-

(0 ('.j r,·-

(r'l cr·, (T

', -('.j If) 0:0

1.(1 (0) (0

(0 ' . .0 ((I 1 • .0 ((I , .... 1 • .0 -o:t C'.J

• • 1.1-' , .. ", '1-

_ r· ... r"-r"-r .. ((', ('~I ((I (0

((I CI", I", II', (T

', 0:1", fT', (1",

I-r', (T', (T

', II', ('~I 1·0

('~I 1.(1 l .... 1 .... -1 C,) •

• .'t

r"-((I r·-

In Lr)

((I cr'l ,::r', (

0

'.J) ':j-I. (0

I. (0 ('oj 'J) , t (I) T·.

(T', "':I' 0::1", r·· .. ..,:t ('oj ('.J r·-

-(',J

• •

.. ..

...

.... ..

II It

.. ..

" ..

" ..

" II

.. It

.. .. ('~I ('~I r·.... ":t (".j 1:'::1

(,) 1 •. 0 r,·.-r"-co (.) 0:0 '::1 IJ'I cr', Col

('~I 1 . .0 (0 I.j) (0

r"-((I 1 . .0

(0 If) (0

....... ll") "1" ('.J •

• 1.0 ...... ':j-•

__

I p .... r· ... r"~' r·· ...

('(I (0 (1",

(( I I)) -:r',

Ii', I':T', (1", (T

', (r., (T', cr', ."T',

(1", (T

', f'"" I, fI

(I)

I. (I Lt .... 't ......

(.-:.

" ft

""'T

~-OO~OO~OONN

-o:t~-~~M ~M--~~N~N~

~

(.,j "

" ..

.. •

.. ....

......

......

..........

II ..

II (I) (.) r·-If) (.,J (0

M~~~OO~~QQQN"1"~~~OOOOOO~OO~~N~"1"N •• ~--o:t

• .,.". r·-

["-r·-

r·-(0:'1

((0 'I', '::r', (T

', cr·, (1", '1', (T

', (,r', '::r', (T',

(T', ,::r', (T

', CI", (.) I. (I C')

1.(1 Ln '''-I (,.)

• •

• C')

If) (0 (0

I. 0 ("~I

C,) ('.J .,..~ r"'"

('oj r"-....... (0 ('~I (1",

.,. .. ~ r ' .• (0

.,.-1 r"-'::1" If) In

(\1 r·-(.)

('.j •

• ..

.. ....

.. II

.. "

.. II

.. ..

.. ""

........

.. (!') (I) (0

If) (.,J C()

('~I 1 . .Ct r·· .• r· .. (r', r·". 1::1 .:;,;) 1::1 '::;:1 ('.1

ll") r"-(T

', 1 • .0 (I) r···.

((I l() r·-I·D

(T', (' • .1 Li) ~

(',j •

• Lf) ~.'t

• • ' .... r"-

r"-r"-r·-0:(1 .-r., ,::r',

(1", fT', cr·,

(1", II', (r', fT

'1 (r', (1", .-r., .-r., 0:.1", '7', (',) I. (I (.) 1·0

I.r) .,. •• (,) •

• • (,)

Z. 1--

(.t:: Ct~ • L

tl • Ltl C

I ~-I =1 Lll ltl •• J ~

-1--

_.J J-

....... C

I W ltl =. (I: Z

::.:: .-' (I: ~,-

• .,:Q

!Xl::::: U

:: (I: =1 ....... (0

(I: W

~~~ ~~~~J-~~

::::: 0-NMm~OO~~-NZZ~J-UWO~OOZ

~-NM~~~~OO~--------NNNOOOOUWOW"""'O~

I··· ~-. 1--. ~-..

~-. 1--· 1--~ -

1·--1

·-~.. ,._. 1,-' •.•• 1-" •.••• -

.... 1--~-. 1,-, .:.) C'-' (,,) :1:: "c I ,,,. (,,) ft:

~::-l CI (

~

Page 120: Characteristics of a packed distillation column for on

TIt-IE

"T'-' ,.::,.

T5 T6 ..,....., t ...

T9 Tl~]

Tl1 T12 -r.f ,-, I l·':'

T15 r16 T1:=; T19 T20 T21 "'r'-I'-' ~.::...::.

c:ot·m. It·.j cm·m. OUT COLDBEEP HelT :BEE~: ACCUt'1UL. rEEIiF.~ATE COOLANT ~:EFLIJ:;'::

DISTILL. ,::m·m3RTE ~:F PATIO

1:3:3[1 ~,,- .., i' o. f ~-.. ,-{{ • tl

77.4 ~...., ~':I l' f • _'

~3(1. :3

~=:9. 6

':, ~ .of _' J. • 1.

91.7 9:~:. 6 97 35. ~::: 9;::. 1 37.9

96m5 97.7 96.1 ,-,-, .-, .:., I' •. ';'1

65.2

1.34 :3. :37

C"-, • '_' J'

f .-, .l_

of .-, .~.::.

4.56

1 :;::::: 1 -:r.,- .. f i' C'. "t .... -.. .-{ ... II 0

77.4

79.7 ;=~1. :9 ;'::7 m 1 ~:;9. 4 :'::9.7 91

96.4 95.7 97.6 97. ::;

96. :3 97.7 .~C" ":' _. '_;. t' .-,-, '';''1'

6(1. 1 :35. ::! 6S.1 !:'of C­,_, 1 • ,_I

1 .. ::::2 .-, ,-.-=' . .:~ . ..:' (

.--. •. :f"-1'-:'

• .1":"

4·-· . .::. 4.71

114

of .-.,-,.-, i·;':·:"'::' -:r.'- of f CI. i ....,.., .-, .. i' • .,'

76.9 -,-, .; f ;' • 1

79 =30.5 ~:::5. 1 ~39 ~=;9. (' 30. ;3 .~. i _" 1 ....

92.5 95.7 96.4 9!3.4

9;=:.5 3:=:.7

:36:1 ::: 59. :3 '35.5

.-, .-:~

. ;: ... :.,-;" 1 -,

• .1.~

4.35

1 :~::::::3 ...., .. - ,-, f '=1 • .:::. 77.1 ... ..., ,.. .. -,.-, .-, t' I' • .::.

-:'tl-~ -, ( ':' m i

31

96 3~::~. 5 ~J:::;. 6

3::::.6 9:3. S: -. ..., ~{ .-.. - ~

':'CI. i ,=:,~ i _'_' • .L. -.r-- -, . ':;::'. {

64.4 50.9

of .-,.-, 1. •. :'I~ .-, .-,-, ''':' .. ;., .. .5::::

1:334 -,~ .-: f i" • a::.:.

77 -'''''' .-! .. ,. . ~ -',-, ,of f :::. "1' -:-.-, .-:' _":'. c~

;:;7 t:" _" 1 s ._I

91 ,:,.:::' 1 _ ..........

35~9 9:3.5 9~:::. 5

3:3. :3 96.7 ·36. ? 59.1 :35.9 64.9 5[1.6

·-t ,-,~

.:._ •. :"t {

• 11 .;! .::' .. -

!'1EAr·.j 76. :34 -..-, .-... f { •. .;i:.f

/i.14 77.44 """;1,-, ,-,,-~

f='.':::'':':'

:=: 1 • ~Z12

9[i.9 31.24 92.64 35.74 ~5~96 j!=:.22

3~:;. 7 97.64

96.46

:~;5;a 76 64. 7;:; :.1.22 1 .-,.-.•

• :'t.;'! 1

·3. :371 .574

'" of ,-, or .i j,.=,

~ 417 4. ;:~5!:!

.. 241

.77:3 1. :355 ,-, .of -:at::' :::. II '"t ( ,_f

~ :3~)5 ~ 6:~~ 1 ~974

.-.-::s ~ ...... i

~ of .-~ ~-t

.;. • .i . .:.'::.:'

.626 .. 541

-."" .. ::I ~I!, '+

.-"-t .......

.. !:t f { .I .- .....

~ ::' ( .. 4~)9

. .J -'.-

.. "t" j' t:

Page 121: Characteristics of a packed distillation column for on

TH1E

T2

T4 ...,..c ~ --' T6 T7

T9 T1(1 ""'!""..1 ..

~ 1 .L

T12 ~.f .-~ , .L.'='. T15 ~.., ,.-! .iel

T19 T2fi

--'-1'-' ~a:::.t::.

.f ,-:"-,C' .i .;~.::'I._f

76.5 77.4 77.2 .......... t:' { ..... __ f

-,,-, t:" .. ':'. ,_I

79.5

':.""/ .~ '_'I ."t

;=:9.9 ·~1 .-, _' J. .. .::.

q'::' -' .... 94.2 37.5 96.1 9:::. 1

96.1

96.1 C:Cl~·4II. I ~ . .J ::::7 C:C1r·4II. (ItIT 6:3 .. :3 C:OLDBEEF.: HOT BEEF.: FieeUNUL. FEEII~~ATE COOLFlt·iT ~~EFLtl:;·:: II 1:=;T I LL .. COt·~IISATE l?F ~:ATIO

'-:rt= ::t __ ',_' .. 1_'

64.5 '= of -t ,_Il .. J.

1. :~:2 ,-, .-,-,. '':'" . .:.,.

c:--, .. __ I" .. 11

4 ·-, . .' 5.26

"".- .-. (t'li i:i

77.6 77 .. :~: -,.., .-, i J s ~:I

-,,-, .-f ':1. ;:1

79.6 ;-,.-, of :::'::' .. J.

9(1. :3 92.5 94. :3 96.9 9::;. :3 96.6 9:::.2

3::;.2 96.5 97.6 95.9 :~:7 .. 1 64.2 .-,t:" -, .~f._f ....

64. :::: 51.2

.-, .-,-, ';'" . .:, f

1·::· . ~ ... -. -.' ....... 4.7:;:

115

1,-,,-·'" .':1.:"1"

76. :3 77.6 ..,..., .-. f ( ... ,:. '7"'? '7 i I .. I

79. ,5 :-,.-, .-. ·:t'::' ... ;t

9~]. 7 94Al 9f3.6 9:3. :3 '~I:' .:! -" -' . '-' 96.4

9!::.4 95.9 ':'-' .. -_. ( • Ct

95.9 .-,.- ..., .;11::1. ,. .-.-, ..., ~~.;'t. i

64 51.2 i'::') .... _1-,-, .-!~

';' .. ;..,. ~..., • ._1" 4 .'

• J. "'t ~ .-,

• a;-~ 4.15

of ·-:t·":II= • J. ._I._I~_I

76.6 77.6 77.4 '7'7 .., , I • 1

7~::. 5 79.6

90.5 90. t:: 95.4 97.7 9~=:. ~ 99.5 36.7 3!:: • ..;

96.7 97.5 35.6 :3?5 .-.-, .-e,·.:·. c-'-,t:" .-;'1._,. r.:~

64.4 51. :;: 1. :::2 - .-. ..., . .:, • ,;.. f

A S7 11 15

'3.77

76.?

77.2 7'7.6 ~t-, '!::" f !:: • . _1

79:10

91

37 a ;:~

9:=:. ~::~ 99.5 97.2

37.7"' 96.2 .-,,-, 4 ;'It=, • .L .-.-, 4 ;::1.';" • .L

·~:5. 7"'

51.6 1.31 .-, .-,""":' . .:, •. ;., i

.57 i7

• J. J

.42

77'.56 -,-, .-,,-, f r' .. :::,.,=, 77.66 ""':'!:;.54 79.5::: ;:~2. 54 :39. 16 9:':1. 5 9~~:. 72 -It:" .·-r-, ;:r _! a .:::, • .:~

97 II :3~':: 3~::. 94 96.6

37. 9~=; 9!::. '3 96.4 .-,-, .....,.of =";' :I i -r

35.94 .-,'-' -,:-, .;., i • .:;. ,;., .-.-, !:".-, c .. :"1. _~ I:'

'35. !54 54.44 '=" .-.)-, _! .i • .:: ::l

1 iI :321 .-, ·-t~.IJ

';" •. ;., f .1

.57:3 ; .-,,-;

a 1 .:":! . 4i9

· ~:1~34 · 1 i4 a li55 .. ~:i45 .619 .. t:'-,. .. -t .i •. _1,. . .:, · :~:S4 1 a :::46

II ;=:41 .4(16 . , • J. 1 211 , 1

.-:,-.-;l • . ..:, ~:~ f

·-~·-r ;: .. ':'':':'.i

.-!.-, .I .::.:..;,!

.1'::'1 · ,-... of :::-.-,

II 1 _i.::..,

.:365

.192

Page 122: Characteristics of a packed distillation column for on

'" o-l o-l

f,·) I::,

'.D

I ['.' ':j" ~

i

.~ ~m~m-~-MM~~OO ~mMOOm~~~ ~0 WNQ~

~'::f '3:' (,~, ~., (T',

(,~, L() "'1-r··". '.D Lr") r"'-

(-,J 'r-i '·0

r"'-~ ... r '.-r··-....... (,) '·0

" . .1" ((0

(,) (0 ,....

L,-)..-I I

"'1-,

.. '4 (r) T

-f ,.-t ,. .... .,-1

I~) C.j

("j C'd r"-1·0 (,") "' .... C

•. I C ,j ("j

-"~'I (T', ',j. "'1-

Tj~ (,J (":;:1 (',,1 ,:':;:. ,::;:, -._

,,(:;:, I. ~I (,1 I.f I

.. "

.. "

.. ..

.. •

" "

.. ..

• "

.. •

.. "

" "

" to

" •

• .'.:.1

.,.. .. " "'.f.'

.,

' . .0 (0 '.j) ":f' ' . .0 '.:) '.t. ('oj '0::1-('0 '·0

(,) '.r) ('01 ' • .0 ,)) C'.., (".I ' .. 0

(',j '·D '0:-1-..,.t

',-1 ",-i

If) 2

: (',J C') C,;:, (") C'~' ((I CT',

((I Ii') lr") ,:::;: ... t (,~, (,') ,t

(',j r"-C,')

C',j C':' "' .... LI") r"-

'::-:;) LO G

' r"'-L(,) "T

(1", (".1 (C

II

" "

ft "

" ft

II II

II ..

.. "

" ..

" "

" "

" ..

" II

" ,,(I) fr) r"-

r·· ............ ("~I w~~~~oom~QQ~~OO~~OOOOOO~OO~OONm~-

.• m-~

• ::-~: r·-

r·-r·.· r"-

r···· r·.-CO

(1", (1", IT

', (T

', !"r', o:r·, (T

', '~', (r', (r', cr·, cr', cr·, C') '. Co (,) '. I) /1"',

~i C

,) •

• • (,-,

~-N NMOO~~Mm-

NMOO~~..-I~m~MOON~..-I~

m

"':f" II

II II"""

II .. ."

..."......."

II II

II "

"('~I Ct) ((I 1·.0 (".1 1·0

M~~~~OOm~OOM~oom~oorooooooo~ooN~m-

•• m-~

. ....... r"'-r"-r"'-r"'-r"'-r"'-

(0) '~', (T

', ':T', (r·, ,::r', cr·, ':T', 0::1", (1", ,:r', .-r., (T

', cr·, (,) '. (I (,:' '·0 LO

....... (,') •

• • (',:,

M~MmNM~-~MN~~M~mM~~Moo~m~ ~N~

~

~

II ..

II ..

.. "

.. ..

II II

II "

.. II

II "

II "

II II

" ....

.. (I')

(t~1 (0 r',-

('rJ -t (,~, If) r·-

' . .0 r"-CO (r', Lf) '3:' '3:' "'t ' . .0 (0

(1", r"-(0

(0 (0

) r·-(0

) '.[1 (0

(',j 1.0 Lr') ,--I

• • L'-) " .... "'1"

• ....... f'--

r"'-r·· ... r·.-r"-r"'-(('

(T', (T

', (T', cr·, CT', (r', CT', (r', (1", CT', "', (T

', CT', (,:' '.0 (,') '. (I to

~i

(',:, •

• • C")

N~m-~m~N~m~N~~mMN~N

M~M~-~

N

~

II II

""

II II

II ..

"..

II ..

" II

"('~I (,) r·-r·-. (',.I

(I)

(,) 1.[1 r"-r"-r"-CO ,:r', Lt") ,:;, 0::::) ~

r"-(0

(T', r"-CO CO

((I r·-(0

) '.j) ((I O:\j If) If) .......

• l'-) """ "'t _

-i r· ... r"~' r·· ... r·· ... r··-r"-

(I) (T', (1", (r',

(T', II', ,:r',

(1", CI", l:r', I,,', (1", (1",

(1", (I) 1.(1 (,", I. (I 1.1-' or""

(t~1 .. (I~I

"""'N~-NNOO

~ ....... m

~~M~M

~~m~~ ~OO~

~

7 •

.. •

• II.

II ..

• II

II •

.. •

• II

• ...

" (',J (I~I r·... (0

(".1 ... -t r'~, '.j) r"-r-.-r"-

(0

(r', 1.1") ....... ':) Lf) r"-((I CI", r"-

((I ((I cr·, (,) (0

1·.0 r"-0: ',J Lf) 1.1") ~-I

• • Lf) "'-< "'t

• .,..... r·· ... r"-

f'<-f',-

r"-r·· ... 0

) ("', (1", ',.', (T', cr·, ',.', .:r', (1", (1",

'''', (r', (1", ,:-r, (1~' I.i) (, .. , 1.0

Lf)

~~ .. (I~t ..

.. .. (I)

'3:' r··-1.1') ("j '.0 1.1') (T', 0:0 ..... 'J', ~

((I ,J'I t(') 'J', ....... If) r"-

'.J) (0 L

() (T', (r·, r"-

1 . .0 CT', r"-

,;t V

II

• ..

.. •

• ..

.. II

.. "

.. "

.. II

.."......"

11

"...

.. (',J (t) 0)

(1") (',J I'S

:I

(,:' I.D r"-r"-r"-((I (r', .:t .,..< (~) L(,) r-.-

(0 O:T', ' • .0 I)) (0

I)) to r·-t(':O r"-

(',J If) .:t .,..", •

• If) ,'·1

·:t •

~1 r·.-

r"-r·-

r·· •. r·· .. r·-((I ':r', .. T·, (r',

(1", (T', (P

, ,::r', ,:r', (r', 0:1",

(1", ,,', (1", (,~, '·0

C') ' . .0 If') "' .... C'~'

• •

• f')

Z I-

i.l:~ Ct~ • LLJ

• L.u C'

I--i =, L.tJ I..tj .-1 ~-~-

-1 ~-

1-1

,-, lLJ W

-', 0:1: -,-.: .. '

..J O:C l-I .~ !XI ........... Z

Ct~ i:I: =i ;.-t (,) II

Ltj

~'::f 1'=1 ~::-~

::' ~ -1 _.1

~ -1'=1 ,:t::

~

Q-NMm~OOmQ-NZZ-1I-UWO~OOZ

H-NM~m~~OOm--------NNNOOOOUWOW-O~

,.-,.--

.-. ~ .• -1-.. ~.--

~-..... ~-.-

•. _-.-

,.-.--

1--... -.-

.--.-... -

1---(_) (,,) (_) ::C .. r. I.L C

' .:~~ ,::-~ 0:.':, ct::

Page 123: Characteristics of a packed distillation column for on

r-... .-l .-l

';:, I;:~f

1 .. :..11..:.,1 (-• .1

.... i C

·) I

I "'.t oo::t

.~~ ~-_OO~~~QOO~~N~NM OO~~ ~~QNWW~~

~ C

·) It) Ii") .,.:,.. ('"oj •.•• C,") '·0

I::;;:, Co;) (.) r"-(.) 0:'0 (0

(1", "'t c') .• ,. (") ,.... ':s:' (I)

I If) C·t] C

) I

' . .0 .. (',j 1~1

.:'.;.: ........ (1) (r',

.... -i \.1')

til 0) (",j ('",J ....... (~1

.,...·1 I.i) ·, .. i .,..'-1 (-,j ( .• ]

.,.. .... If) 1~~1 lLJ I:;:'

11 "tU

"""" (('I

" If

1:;;:1 •

" ..

"..--I

" "

... ··1 "

" "

" If

• •

" •

to •

• If

If (r', ft

'r"I 1,0 (1", ..

(".1 ',.0 oo::t

' • .0 "'j" (I) (0 0

) 1 • .(1 (',1 (',J "1' ('.j (0

"'j" (0 ('.j ('oj 't

0

) 1.1) ....... If)

'.0.1 Z~~"""'~M~OO~~~NOOOOOONQM~OO--Q OO~M~~~~N

fr~ •

.. ..

If •

• •

.. •

" "

!I "

• •

• ..

• •

" ".

"" (I) (,) r·-

,-t ·r .... (T

') L

Lj ' . .0 r·-

r·-r·-

(0 (P

, (,d (I) 'J', (' • .1

~ ' • .0 (0

' .. 0 (0 (0

(0 ' . .0 r·."

'.(1 oJ', ('.j ' . .0 oo::t....... •

• 1.(,) ...... "'j" •

:::::: r·· .• r"-r"-r··." r··." r·.· ((I ((0

((', ':T', ... r·, If', (T', cr', (T

', (r', cr·, (1", (T

', 0::1", (.-, '. (t .... ", '.Ct ll) ....... (,") •

• • (,~,

~M¢-~--~~~OO~~~~N ~~~~N~ ~~~~

~

"=t' •

" •

.. •

II •

• "

• ..

" • ."

..."".."

"" ('~I ('~I ((. 't:1'" (.J

T-I

(,)

1 • .0 f'.-r·-r '._ ((I (1", .......

'.j) (1", , ..... (',J Ii') (0 1 • .(1 (0

(0 (0

'.{,I f'.-Lf') (T', .......

1 • .0 '1' . .,..... •

• Lf) ....... 'r:t •

"'''i r"-

r"'-r"'" r··." r·· .• r·." ((',

((0 0

) (1",

(1", (,1", (1",

(T', (T

', (1", cr', cr·, ,::r',

(T', (,~, '.(0

(,~, '. Co 1.1") ....... (,") •

• .':t

0) '.:t Ii') .,. •• 'r:t ('.J ("J (

,j (',j r·· .• "j-r"-

']', C,J -.j-

.,..... (.")

....... "'Co '.(1 ~ r··.

-r "'=t

.. "

" til

• "

" ""

.. "

• "

".

" "(~~I ('~I ((I <t;j-

(',J .:::.. (,") 1·0 r"-r"'-r·· .• (0

(1"1 ('.j (0 (~) (',j (,") ' . .0 (0

1 • .0 (I) (0 (0

f' ..• (0) I.f) 0:1", ('.j 1 • .0 "1'.......

• • In ...... "1'

• .,. .... r"-

r"'-r··-r·· .• f'o-r·-(0

(0) (T

', (1", (r', 0:1", '::r', cr', ,::r', ']', (T

', (1", (1') (1", (

.) '. (I (,~, ' . .0 1..-)

~ ... (,~,

• •

• .,.:t

~~~-~~~~~-m~ ~OOM--mOON M-~~N~

~

... t" "

.. •

• •

" "

" " ".

"."",,..,,"

"""" (,) (t~, f'.-

Lf,) (',J (0

(.) '·D r··-r···· r"-

((I (1", ("oj (0 (;;) ("j 'r:t f'.-

(0 '.£1 C

I) (0 (,) If) r"-

'. (I ,J'I C',J 1 . .0 '1"....... •

• Li) -, Tt

• .,..., r-· ... r·· ... r·· ... r··-

r'·-r·-

0) (0

(T', ,:r',

(T', (1'-, cr', fr·,

'~'I -:r't (T

', _j', (1", ,:t', (I~' t. (I (,,') 1·.0 Ii") .,...... (,)

" •

"f')

~~~ ....... m

~~~N

OOOO~

~M~~"""'~"""'~ ~N~

m

v "

" 'II

" ..

• "'II

"""

" "

" "

.. "

"..

" (I) ('~I ':0

Lf":' ('.J (,) (,~, '.t) r···· f'.-r·-

(0 ';:1", (.) (1", ,;:, ('.J ':1-r"-cr', r"-':0

r·-(0 '·t) r"-

'.(1 ,:0 ('.J Ii') Lf':'''''''' •

• Lf') .,. .... "'t •

.,. .... r··-r··.· r··.., r··-r·· .• r··-

((I (0) ,::r', (1", ,::r', '::1", ,:r', C

h (T

', ':1", (1", (1", ,:r', ']', (.) '. [I (,:. ' . .:0 ll") ....... (.) •

• • (.)

I.i) ....... oo::t ....... "'t "'t (1"1 .................... Lj') r"-,..... cr·, If) ....... I.j)

,..... 1.(') ....... ':1"1 r"-o:t I~'~J ,J'I

__ _

_. (."J

"1" "

" "

" ""

""""""..,,""

" "

" ..

.. ..

t.'.S "':r ') .. '

I, LI " 1J r·-

(,~, ~(I r··-r ' .• f'.-0

) cr·, oo::t '3:' .::;;:. C') Lf') r"-

'J', '·.0 (0 (0

(0 f'.-

(0 1·0 cr·, C··j li') If)""'"

• • L(')

~ ... '·t

• T

· ... r·· .• r·· .• r·· ... r· .. r·· .• r"-(0 ,:r', (T', ':1", (1", ':1", '::1", ':1", ':1", ']', '::1", ':1", ,J', 'J', (,~, 1·0 (.,) '.(, Lf':' .,. .... (.,) •

• • (,~,

ZI--C

t::Cl:::

.Ltl

.LtlC

t ..... =, I.LI lLl _.1 1--

I-. .J I-

H

C' L

tl L.tl =, (c :z :,.:: _.1 (C 1--

!XI !X

I 0

::-Ct:: (c -, ..... I ... ' (C

W

~ci~ 5~~~1-~&

E

Q-NMm~OO~Q"""'NZZ~I-UWCt~OOZ

t·~ ,.-~ (".1 (.,) "':1-1. 1)

'.£1 r·.· (0 (1", or ....

, ..... ,'1 ,. •. , ,,-1

... ·1 .......

, •• (·oJ ('.J (',j CI (:1

CI C

' (.) L.lJ CI W

\-'1

CI U

. I ...

~-

~.-.. ~...

~-

(... (._.. (._. 1--.. i·_· ~.. (._. 1-.. 1-.. i-

~.-. I--.-. • -

I--1-." (

j .: j

C) :r.: (1: l t.. C

) (~~ ~'::=t (.:, Ct::

Page 124: Characteristics of a packed distillation column for on

TIt'1E T1 T ·-,

o· .-

T7

T1ff Til T12 :-of '-1

I.i,";"

TiS T16 T1:=: 719 T2ft T21 ""!""'.-,.-. f'::'a:.:

I:: m·m • It~

75.9 77. 1 76.9 77.1 77.9

;=: 1 It 1 ~:;4. 7 :39.6 '~i e-_' .L • ,_,

92. :~: 94.7 :::, .... ..., _, f • f :~.., _. I

:-!!-, ...,

~,:t. i

96.5 '-'f::' C" .:;,,_, • ,_I

C:Cit·.JII. CIIJT 61 • 4 COLDBEEF.: 36 HOT BEEF.: 64. 2 FiCCUNUL. FEEm:::ATE COOLANT

DISTILL. ,::Ot·.jDSATE f;::F F.:ATIO

1::" 1 .-. ,_, J. • .::.

• '-'4 J. •. ;-.-.. -.""':' ':" •. ':t I

.42

1:351 ..... -(e,

77. 1 ..., .. - ,-, f Cle .:1 76. ;:: ...,..., ,-, if. ,=, -,,-! ,.-f ':'. c· ~:a3. 6 ::.-:. .-41 '_f._,. "'"t

;:;9.4 91. 1 91.7 9:3.6 96. ::: .~.- q _' t·. _'

9:::.6 9~::. 9

96.6

.-,.- of .;-'=- • .1 .-e­CI._!

51-3.9 1.34 .-~ .-,.., .;- •• ;, 1"

4 ·-· . .::. 4.44

118

., '-,C"'-' ,1.':',_''::' ...., .. - .-, ,. Cr. ~ ...,~ .of f i • "1"

77 -,-, .-, ( f • ~ ...,..., :-, i i • I:.

;33.5 9[1.9 91.2 92.6 95.6 95.7 97.6

96.1

6~]. 4

65.9 51. ::: i .-,.-. J. •. ,;,.~ .-, ,-,~

';' •. :., i t:".-,

• ,_11='

• 1 :~: .41 i .-.-, ~.o.::.

1:;:5:3 76.4 ~~ .-. j' f •. ;..

76.9 -:'1-' of f f • J. ....,.., -, I" :" • f "':'.:r ':' ! '-~. '-'

79. ;:~ .-, of -, .:. J.. ;"

::::9. 1 90.5 3(1.6 31.7 34.1 94. ;=~ 97.5 97.9

36.:: 9:::~. 1 96.4 :;:7. :3 59.9 ~36. 2 .-.- .-, ,=.t •• a::

51. 1

.5:::: 1·-· a .::.

.41

1354 76.2 ?-::' .-, ; J • ,_,

77 -:--, .-. f J' • ==::.. ...,-.. .-( { • '=,

7!~ C ! _' • ,_I

90.2 9J.:1.2 9(1. ~=: 92.6

96.9 ':'"""" -=' _' ;' • i

3:=~. 1 96.9 ,:,~ ~

_' f • f

96.:3 .-,-:s -f .:.. f • .L !:" ~=t -, _1_, • i .-, .• - .j .':rCt. 1. .-- :-, C:·_'. ~.::

51 1.31 :3.49

4·-· . .::.

t'1EAt·.f 76.14 77.24 76.92 7'7 • ~:1::: 77.76 7::;.44

~-I'-I ~

~':' a::.. f

9~i. :::4 91.2 32.6;:: 95. :36 95.54 37. ~=:2 9:::. 1';: 9~:;. 5 37.2

36. :3;:~ :~::3. 16 6(1.44 -36. 14 ·55:142 :-- .a of

:' 1 • .L

1 .-,,-.-, .. :.-.:.:.;"

-i ,-.,,-I .i~C:1

.415 4.60:3

.-....... ':" il.

~ ,-,e-• J.~._t

a 1:34 .084 .164 .114 .-,.-.. -: II .=:. ~:I~=1

'-"-.-:'1 .. ;,,::.,. .50:=:

1.5:35 .2. ~:15 1.547 ~ 719

1 :,'::' a _"_

.114

i ~!-I II J. _'1:, .~:11:37

7E-(r3 SE-04

'-~I-"-: a ~,:~~

Page 125: Characteristics of a packed distillation column for on

.... 11

T2

T4 T5

T9 T 1~3 T11 T12 ~of .-, t .:..;"

T15 T1G

..,.."" I~ t .L_,

T21 "",,-,,-~

!.:.:.::. C:I:lt·~II. I :'·4 ·::o;··m. OUT COLDBEEF: i-:r:IT BEEF.~ ACCUt'1UL. FEEDf:;:ATE COOLANT ~:EFLU;:'::

CONDSATE i?F F.:ATIO

1355 -,.- t:" f tl. "_, '7"7 --:. 1 ; ._1 77

79. ::;:

90.4 91. :3 92. :::: 96.7 9:=:.2 9:=:. 7' 9:::.1 9:=:.5 96.1 :~:7. :.3 59.? .-, .. - .-. ·~Cl •. ';'1

65.9 5~~i. 7 1. :;:2

c,-, • __ I:,:t

• 11 .42 5.07

..... - -{I::I •. :_

77.4 77 '7"7 .-:' i J • '_'

77.7

-'1::' CO j,'. _'. _I

9(1.2 90.1 9~J. 7 92.4 92.6

97.6

95.5

96.2 ·-t-' t:" .~I f • ,_,

:36.5 .- .. - .-, tiC' • .:::.

51.1 1. :32 .-. .-,-, ';" •. ;., f

.59

. 11

.41 5. 1:3

119

~ '-:C"",", .1. .,:t._! J'

...,-, .. -f ( • c. f? .1 77.4 ..,-, .-. I" i • t=t

-,1-' .of

f '='. "t ;:;1.7 89.5 3LZ~. 5 9£1.6 91.5 94

9?7 :'7 C' J I • ,_I

96.2 97.9 95.7 .'-'-1 ... ~I.~. !

36.4 66.2 51.2 1. :31 3.49 .5:::

i .-. • ,l . .:-

. 41 4.56

76.5 ..,-, C" ( ( • ,_I

77.1 ..,-, ." f ... "'t

"7'" .., j I • i

7!:::. 4 79.9 ~::! 1 • 9

91 91. 4 3:3.1 96.2 95.2

97 • ~:i 9:=:.1 96. :3

96.1

64.1 :36.5 66.4 Sl.6 1. :31 '-1 '-1-' .':" •. ;'1 f

'=!:" . -'._' .14

. f .. ."t.l. .-, :-,1-: ;':. ~::1::1

1:~:59 76.7 77.4 -,~ of f f • J. 7-::- .-:' i I •. _1

;30.1 ,-:.-, '-1

':Ic:::. • .::. ;::9.9 91.6 ,::;.-, -, _.~. f

95.1 9? ::: 95. ::~

97.9

96.7 97.5 95.6 :37.6 f5:~:. 9 :36.2

51.2 1 .-,.-,

• ,_I':'

.-, .-,-,

.:" ... ;'-;'

.16 ....

.'""1"1

3.41

[11 EA t·4 ~.- ,.....-{t! •. :1(:-

?7.44 77 •• ]2 -,-, '-u-; ;" 1° • ~I=I

77.74 -,.-, -,.-: I"":.r. ;" ~

:::~1. 66 ~=:9. 4 90.66 90.94 92. 16 94.4'4 9:3.34 97.4 37 • ~::

36.56 97:t 9~:: 95.94 -,,,,,,, ..... ,-, .':If.fC:

62.92

66.14 51.16 1 • :~: 1 ::! :3.41:::

.; .-,,, " .i ;'tl

~ of .-, :a'"tJ.':':'

4.41

.114

.164

oI! C"'-' .. l·_!~

• :319

.647 i. 141 1.349 2.5:35 1.545 ~ !5~]4

,-,-, ." .~("t

.27

• :356 .-,-, · ::::';'

:1444 1 • :3:~: 1 • 13 .195

9E-O:~;

" ~]6::::7 • (1199 • ~:119'3

.7514

Page 126: Characteristics of a packed distillation column for on

T It'1E T1 T2 ""'.-. I .:..

T4 T5 ,6 T7

T9 T1f1

-T" .. t.LJ.

"""" ~ .-, t .1.':::

Tof .-, ! .1..';'1 Toit:" ! 1·_1

T1G T1::: ~ 19 T2~3 T21 T'-"-' f'::'''::'

cot·iII. IN cm·iII.OUT COLD BEEP HOT :BEER FiCCUi·1UL. FEEDF.:ATE COOLANT ~:EFlU::-=: DISTILL. COND3ATE FF F.:ATIO

14f1~3 76.4 -,-, .of ;' I' • '"T ......... { ... 77. :3 77.9 -,,-, ,.-f '='. c. ;::0.3 :-,.-, ;:::0 ~:t~. ,_, 9(1.2 92.4 94.1 96.6 9:=;.7 96.6

96.7 97.9 96 ,-,,-, .-, ':",=' •. :." 6~~:. :~:

:~:6. 1 65.6 51.4 1.32 :~:. 49

1::"'" • ,_'i .. .., • J. f

.41 :3. :36

14~Z11

76.4 -,-=' .-, f i •. ;.,

76.9 77.4 77. ;:!

95 97. :::

96.6

97. ;:: 9:3. :::

I:'~ -:r _' ,. • i .~ I::" .:, .' ,_I. _'

:3:::. 1 .-.-, I-' c·.::,.. '.:. :36.2

51.4 1. :32 :3. ::::7

.. .., • J. f

.< ."t .-, .-, .. ';' •. :." i

120

14(12 76.4 ......... . { ( . ~ ......... ({

77.4 77.9

3[f.3

95.4 97.7 99.1 96.6

9:=:.1 9:=:.2 96.1 97.tl

.-,,-, .-, ':".'=' • .::. 62.6 :31$.2 .• -~ .-. Ct,_f • .::..

51.7 1. 31 :3.49

1::'''' . ,-'( .17 .4

76.1 ~? .:' J J .. ,_I

'7.- I:' i tla_' ...,~ .-, ,. f • r::. ~..., ,-, j' f • ::' -,:,-, -, i !:~. i

;3f1.4

9~Z1. :3 5r:3. :3 95.7 51? !:i

99.1 97. :3 3;:; .. 6 9::~. 1

97.9 9::::.4 96. :;: :3;::. ~3 61. ~:; '36.2 .-~ .-: '="-) • .::. 51.2 1.29 '-r .-,-, .:'r •. :. ...

1'7 • J. 1

.4 :3.4

14~Z14 76. :3 ..,-, ." i i • "1'

-,-, ,-, ! i • '.:' ...,..., ,-. 1" ( • I:~

30.4

95.7 97.9 99.1 36. i:: 9::~. 2 9:=:. 1 51::!. 5 96.7 ~:;,::! • ..:;. 35.9

·:,c .:t _"_:. '-' 65. :3 51.5 1 .:: .. ~ '*. --' :3.49 .59

i7 • J. i

.4

76. :32 77. :36

90.22 9:3. ~)4 9511 1;=: 97.46 51!::. 9;=: 96. 7::~

3::i ll [12 9:::.4 96.156

95:196 :3::~. 24 62.5 :36.2 .-c- .-,,-, c:~ ,_'. .;,t ,=~

51.44 1 • :~:0:=~ 3.441 . 57~:: s 171 ~ 4~:12

:" D. .13 .055 · (i55 • ~::J:::4 " (iS5 · ~]71 # [i55

• (1:=:4 • :397 .669 .5:32

1· 7'~ II ,_.

.-,." t:" • .:::.~._f

'-''=t:'' II .:: _,._,

.219 · ~3::~9 II 6f1:':: • ~:J71

" ~-,,-! II .i r::a::.:.,

.016:;: • (16:37 6:1 6E-(r3 3.1E-(r3 ~:. ?E -~~1:~: ~ (19;:;;:;

Page 127: Characteristics of a packed distillation column for on

r-l N

r-l

...... , .-, .. ,

'-1"1

f~1 1:':-:'

I~I "j r·-

"j ('~I ""

(T' I

.~N N~~-N~W~~-~~~-~~~~m~~ W0WGW~

t=~ '·.0 (0

':T'I ~ , .... '::t (r', (0

Ii';' ,::r', ((, '::t' '.,(0 r·· .. L'-:' ('"

c:;) r·-,:::;:, ' . .0 L'-;' CO ,:::;:, ('~I

(,) 1 • .(0 Lf') , Lf') (',j

............... T.... ....... ....... ...... T·" C',j ~ I.{I (T

', f'.-C

,j ....... ''''f .... ,j (,) 1 . .0 Co)

("oj ....... L'-) ,:0;:,

('oj~... • G

I • L If

........ ((I

.. ,.

.. ."

'" "

.. "

.. ft

.. "

IIC "

.. "

" ..

" ,.

• ..

" •

"r··... • (I:. If) 'rt-

1.0

"=t (·oJ

1·.0 ··t ~

... t C

',j (',j (',j ·:t (',j ~ 1

·0 I·D

I.,J) (',J ('0 ....... (0

I.D

ZNN~Q~~~-~~OOM~-~M~MN0N~~~0N~~~OON

'I

" ..

.. •

• ..

It ..

" ..

It ..

.. "

It ..

.. It

.. ..

.. ..

.. ..

.. (,) "'1" 0:' tf) (r·. r··· ..

I.JJ ~.o r"-~.o r·-

r"-(0

,:::;:, (,:. '::r', (',J ":t r"-CO r"-

C,) (0

(0 r·-

CO ' . .0 (0 , ..... L'-:' Lr'')......

• • If) ....... C',)

• ::::: r"-

r"-r"-r· .. f' ..• r· .. (('I (0

0) '),', (T

', '),', (T',

(1", (T', "", I,', cr·, (T

', (T

', C,) I.]) (,) I. (0 Lf-:' ....... (,~,

• •

• (,~,

m0~OO W~N~~

~"""'W0~W

~~~.............. ~0N~

0 I~

.. It

II "II"

II"

....

II ..

....

..........

.... (,) (,:. (r·. Ii')

(1",

~W~W~~OOQNmNMWOO~OOOOm~oowoo ....... w

~ ......... m

-~

. ....... r·· ... r· ... r·· ... r··-r·· ... r· ... ((,

(I) I)) (1", CI"I ')', (T

', (1", (1", (", (T

', (T', (T

', (1", ('~I I.,() (I~I

1.(1 1..1-:. "t-f (I~I

It ..

.. (,",

roN

~~MMm~~M OON~M~ ....... ~

~~ ....... ~OOMN~

ro 13:'

.. ..

It ..

.. It

.. ""

......"...............

.. (I) (I~' 0:' L()

r··· .. ~ '.(0 r·-

r"-1·.0 r"-

(0 ,:::;:, (',j (T

'I ("j ,:to r"-(0

r"-(0

(0 (0

(0 (I) 1 • .0 (0

...... Lf') If)....... •

• LO ..... 1·1" •

....... r"-r"-r·· .• r·· .• r··". r·· ...

((I (0 (0

l::r', l::r', (T', n·,

(T', (i', "", ,1", 0'1", (T

', ,1", (,"I I. (I (,., I. I) If) .......

('~I •

• • ('~I

r"-....... (0

(',J 0) to Lr',) ("J

....... If) (',J r"-

·t CT'I 1·.0 ....... C,') ....... r"-CT'I (0

C') (',j (1"1

1.[1 I:::;:'

............

".."

.. ..

• ..

.. ..

.. ..

.. ..

.. (t') "=1"" (0

',.0 '·.0

~W~~~~OO0MQM~~~~OOrooo~oowoo ....... ~m ......... ~

....... ~

• ....... r· .• r'· .. r·". r·,-

r"-r·· .. ((I 0

) I)", iT', 11", (1", (1", (T

'I (T', (T

', CT'I CT', (T', fT

', (f) 1.(1 (,) 1.(1 Lj') ....... (()

• •

• ('~I

~~0~-oo~m~ ~~OO~ ~~~

....... ~0 ....... ~

~~N~

m

I~I ..

.. ..

.. ..

.. ....

........

....

It ......

II ..

.. .. (t) ('""J (r',

1 .. 0 (r'l

1.(.

~ 1.[.1 r"-' . .0 r"-

r ' .. (I) I:::;:' (,) ,:::;:, (,~, I. .. ) r·· .• (1') r"-(I) (0

0) r·· .. (0

I •. J) (0 (',J L'-) I.f)"""

• .• If) ....... (,)

• ....... ~

~~~~~oooo~~mmmmmm~~~mMWMW~-M ••• M

m~~

....... ~~~0 ....... W

~ ....... N

mMmNm~

MM

....... ~W ....... m

-

13:' ....

.....

II ..

.. ..

.. ..

.. ..

.. ..

.. .."

.......... ft) ":T ':1",

1,(1 (r', 1 .. (1 ~ 1.[.1 r-.-r"-r"-

r·-(I) ,:::;:,

('~I ,:::;:, C') I. .. ') 0

) (T', ' .. (1 (0

r"-0

) '.[.1 [,.-1 . .0 (0

(',j 1 • .0 1.(')....... •

• If) .... (,') •

"·'1 r"-r·· .• r"-r·· .• f'.-r···· 0

) (0 (T

'I (1", (1"1 1)"1 (1"1 (T

'I cr'l 1)'1 (T

'I C1"1 I)', CT'I C'~I I. 0 C'~I 1

·0 IJ~I

....... C')

• •

• (,)

ZI-(.t~C~

.lLl

·we

, ~='L.LIlLl....JI--1-

....J~-~

,-, W W

-, 'I

.., .•.... .....J II l-• -.p:'.Jp:'.JECt~a:3~(Q(r:

w

~~~

~~.....J.....JI-~~

E

0 ....... N

MmWOOmQ-NZZ....JI-UWO~OOZ

-....... N

M~~W~OOm---

....... ---

....... NNNOOOOUWOW~O~

~-

1-·-~-~-

~... 1--1-." ~-. ~

-~-

I-I··· 1

-~-. ~... 1--

1--" ~.. ~.-1

-I .. •• .... ) (

) f.) ::r: (C

L t. (

) C~~

~~ C

) ('~:

Page 128: Characteristics of a packed distillation column for on

TINE .... ~ I .i

T·-, .:=:.

T4 T5 T6 ,.....,. f f

T9 T1(1 -- ·i of ! J. J.

T 1'-1 : .1..:.-T15 ;16

T19 T2~~1 T21

141~j

75.9 77.1 ....,.- .... (':'. {

76. !.:; 77.7 7:=;. 1

.-,,- .-, r=~'::'. ~

91. 5 92.4 95

'::'7 .::: _. I • _

9:=;. !=;

51!::. 5 96. :~:

C:i]t·~rl. I t·~ :~::::. 2 COt·iD. OUT 61 COLDE:EER Hi]T :BEEF.: riCCUNUL. FEEDF.:ATE C:OOLAt·n F.£FLU::-:; DISTILL. Cm·mSATE ~:F F.:ATIO

:~:6. 1 65.6 5(1. ;=: 1. :31 '-1 --,-,

.:; ... :;. (

. 15

.4

1411 76 77.1

77 77.4 ?;::. 1 ?9. :=: ;::2. 1 ~::9 .. 1 9f1.9 91. 7 9:~:. 9 97.4 96. :=: 9:=:.4 9~=:. 6

97 ... ::'

96.4

.-C- .-t,o_' .. 1::1

51 1 .-,.-,

... :;1'::' .-.. -,-, .;a.~'J

.. 57

. 14 .~

• 'T

4.04

122

1412 ~.- .-. {c· .. .:: 77.2 ...... - .... {tl • ..-...... - ..... {Cia ,.-

77.5 ..... .., ,-. if .. '=1 73.7 :::1.9

31

96.6

99 .. 2

9~::; .. 7 96. :::: .-. .., .-. .:;1 f ... :;t

:36.2 .-t::" ~

Ct._' .. -+ 5(1.9 1 .-,.-, .. :. . .;::.

:3.49 C""":' .. ,_, f

. 14

.4 4.19

1413 76.1 77.2 76.6 ...... - ..... {tla I

77.4 77.9 79.6 ;:;1. 7

.30.1 :':(1.4 91.7 34.9 95.4

9?4 3:=:.5 36.,3 :~:6. 4 59.9

1. ::::;:: .-, .-.-:" .~. ·:'·f

.4 4.31

1414 75.9 ......... (' {

77 -::'7 '::: i 1 a ,_,

77.9 79.5 ;::1.6

~-,,::, I:' .,:t_, 11_'

3(1.1 ~L7-f '::: -' '-'. -' 9::::. ::: 94.4 37'.9

~.:, ,::: _' '_I. _' 96.6 -:,,- .-! :'1'= ••. .:.,

59.4

'-1::- ." 0·_'. ""'t

S~1. 4 1. 29 3.49 .57

.4 4.4:3

i·iEAt·~ 76. (12

77.12 76.7 7'6. ~:;4 -,-, t:' c' J • ,_i

77.96 ?9.72 ~:; 1 . 9 ~:;:=;. 96 90.6 91.12

96.ft4 96. (1:=: 9::::.4'::' 9!:!.42 9:=~. 92 97 a 7::::

~::;. I' a

.. 1:3 4 ~~f~=~4

• £171 1 t:".-,

• J. '_''::'

1·-,·-, · ~.:::. .1:34

4 ·-,·-, · ~~ :-~ ." .-,

• ..::''''t:::. 1 '-." """t i. • t·-t f 1.924 1. 154

~ 164 .. -.. ~c~

:~:? • 24 ~ ;379 60. :36 . i~J2 -,.- .-,,-, ':t'=l. c::.~

1. '~:14 .'3. 41!=:

t:'-'C' s '_'!' ._1

; .-,-, .. .L . .:. f . .'1"

4.192

. 11 .-,,-, .. ..::..;.. .i~H46

;::E -(14 • 1 ;::44

Page 129: Characteristics of a packed distillation column for on

C"'l

N

o-l

(, .. ,

t:':':. C

• .1 "'" ,;.t

'.D

·j

(I) '·0 ':j-

(0

• (·oJ 'J', r"-CO

~,1" .. ·i ('oj (o

j CO ('.J

("'j ('.j CO (':' (0 r·-

'<j" "':I"

('.j '<t (,d Lf') (0 LLJ

('oJ ...... ,:;:, ('oj ~7.f (o:.r (0

'.j) '.:1" .: 0') ' • .0 ':::'

,~, '.(I ':::' r·-CO] 'J', Ln cr', '3:' .: ,~,

CO ,.-1

..-

i ,:;;:, L,-' cr·, Lf")

Co') C

·').,..oi I

Lr) "

,-i .:S:.

or-{

.,.....

.. -I C

',j -r:j-"'T If) Lf) 1 .. (1

s •

.. I. (I (",1 ...-f --I '=1

~"i (',j ..

--t (\1 .. -1

,.

(;;:. I:::', LJ •. I "'T ((I

,. "

" "

,. "

" ..

1!

" • or-"

..-t -"", "

.. ..

• "

" II (',J

II "

• r·· ... I::;:, "

,,1 .. (1 ..

~~~OO'<t'<tNN~NOO'<tNNN'<tN

0'<

t Woo~"""

00 ::::: .,..oi 'I"oi r"-r"-

Ii') 'I"oi CO (r', 0

) .. ·i

...... (r', I)) Lf') "'t ,.t 0) ..... Lr) Lf) "'t '<t .:.') r·-

"'t 'J', r·-...... '·D

cr', .. ·t (C

"

" ..

.. ..

,. ..

.. "

.. ..

.. ..

.. ..

.. ..

.. "

" •

II ..

,. .. (',J f'")

1 •. 0 (1:1 (r', .,......

LLl 1·.0 r-.-1 •. (1

1.(1 r·-((I (1",

T-I ((I I:S:,

I::;:' 13:1 (',J .;.) r·,-

((I (0 (I) 0

) '.J') ' .. (1 .. ~

1.'(1 1..'-) I:::=:I

.. "I .... )

--t (I~I

..

E~~~~~~~ro0m~m~~~~~~m~M~M~~"""M ••• ~

~MM~

~'<t'<tm~~M

'I"oioo~~m'l"oi~'<t'<t~mN~~~

~

..-t ..

,...

..........

If.. ......",.

II ..

.. ..

.. ..

.. .. (',J (,:. 0

:' If) r"-

'<t~~~~~OOQN~~'I"oiM~~OOOOooOOOO~~M~~0

• ·m

-'<

t •

-~~~~~~oororommmmmmm~~~mM~M~~'I"oiM ••

·M

OONNmoo'<t~

-N

MM

...... NN~~

~~'<tm~~~~~

m

....... ..

.. ..

II ....

..........,...

II ..

.. ..

.. ..

• ..

...: ".) ('~t

-.:t Lf)

'<t~~~~~OO0Nm0~"""M'<t~OO~OOOO~~N~~0 •• m

-'<

t •

~-I r"-r·' .. ·r·". r· .. r·· .. r'·-((,

Co) (I) (1", (T

', cr·, (f', CT', (r', (1", cr',

(1", cr", (1", Co') '.(1 Co') '.j) Lf') .. ·

i Co') •

• •

Co~,

r·· .. (.,) _ r···. ' . .0 ' . .0 ...... ((I (1"', ':T', ':T', (.,) (0

(I) (.", .. t (0

In

r·-~ '.(1

('.J ~ (t)

'J', r"-'·.0

....... ....

"" ..

.... • (',1

('~I r"-(t)

(,) '>T '.D

r"-'.D

' . .0 r··.· (0 .:r·, ...... (0

,3;) cr·, (::::. ...... .; 'oj r"-((, ,)) (I) (0 '.D

'·D

('oj '.D If) ':::'

• • If) ..... "=t

"i r·o. r·-

r"-r"-

r·· .. r"-r"-

(I) (0

'),', Co) 'J", (T

', '::T', ':T', q', ':T', cr',

(T', ,,', (0

) '.j) (.)

'·D Ln ~ (0

) • "=t

~~-OO~'<toom~M~~ -oomM~N~m-NN~N~~

'<t .......

.. •

• ..

.. ..

.. ..

.. ••

.. It

• •

.. ..

• "

.. ..

.. ..

• (',J (r:1 r"-(,) If)

~~~~~~~m-OOmmQ-

...... ~oooooooo~~m~~Q •• ~ ...... ~

~·i r"-r"-

r"-r"-

r'·-r··-r"-

(0) (0

,)) ('(I q', cr', (T

', '::T", cr·, '':T', ':T', (1", q

', (.) If) (.) '·.0 1.1') ~ ... (.)

• •

• v

m -moo~ '>T~M~~Mm NN~N~~~Nmm'>T-~

N

...... , ..

II ••

...........

..."............ ('~I f':' (0

(I) Lf:a

't 1 . .0 r"-' . .0 1.[1 r"-

(0 CT', -

(0 ':1", (1'", ,::;:, ...... (0) f'"-

(I) 0) (0

(0 ' . .0 ' . .0 ,J', ' . .0 LCI ,::;:,

• • If) -

~

0

,,·i r·· .• r·· .• r··-r·-r··-r·-

f'.-(0

(I) (0 (0

q', q

', cr', '::T', (1", ':T', ':T', (T

', '::T', (.) Ii') (,~, '." If-:' -

(.) •

• • '<t

Z I-

Ct:: Ct:: • W

• LLJ C

' ...... =

'WW

.....l1-1

-.....II-

...... C

' W LLJ =, ':t: Z

::~: ....J ':t: I-

o • ~q ~ :::::: IX

'I: =, 1-1

(() 'I: W

A~~

~~....J....JI-~Ct::

E

Q'I"oiNM~~OO~0-NZZ....JI-UWO~OOZ

............ NM~m~~OOm--

...... -----N

NN

OO

OO

UW

OW

...... O~

~I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-UUUI~~U~AUCt::

Page 130: Characteristics of a packed distillation column for on

--r N

r-l

,,,, .. , I~I

m

~-

~

7~~

.~~~~~-m-~-Q--~~

~~~~~~~mM ~W~~

~M~~-N-~m-~OOM~~-~0~oo~~m-~~-

0M

IN

-r-f -:s) .:S:I ....... ('.j (,) -.. 0

."1" •

• • 1 •. 0 (.) -

... f'.J ,. ..... C· •. I 'r~" o

r-! -.(, C

',j .. --f '-'.j .. -I I::::.

':s:... IJ.J (.) ((f

III ..

III "

.. "

.. f',1 ......... .,.............

.. "I~I

.. (0"'1'" •

~NW~

NO

OO

OO

OO

O ~~OO~~OO

~~N~OOOO--

~

Z-N~~~QNQ~OO~N~oom~~ ~~M~~~~-~ ~-~

(1: •

" "

• •

• •

" •

• "

" •

" "

••

III III

.. •

" III

• (r~1 (.) (T', (0

'::. ..-t LLI 1.,Co r·.,

1.,Co 1 • .0 r··-(T

', ...... 1.1":' ,:;) (') 1.1') r·-(0

'.f) I)) (0 (0

(I) (0 ' . .0

r··., (,~, '.f) ' . .0 ,:::;:,

• • L ........... ':I'

• ::::.:: r""

r··., r"-r""

r·· •. r·· •. (0 (0

':1"', CI"', (T

', (r', (T',

(T'I (r', (T

', ''''', (T

', (T', cr', (,~, '. (I ('~I '.D

I. ... :. -(.)

• •

• (,',

~NNOO

N~"""OOOO-MMm~~m~M~-NOON~N~

m

(o,j ..

••

••

II' •

....

"III

III ..

.. ..

.. "

.. III

.. ..

" III f')

(I) r"-

(r'l (1",

~~~~~OOmNOOQm~OOm~OOOOOO~OO~OOM~~Q •• m-~

. ... -of r'", r'·-

r"-r·· ... r·· ... f'·-

(0

(0

(r', I)"', (To, .::r', (r., cr', (r', ,:r',

(T', (r', ,,', (1", f'~' I, (I f'~1 1,(. lf~1

--t (,)

.. ..

• (',J

MN

NO

O-

MOO~OO

-NM

m-O

O ~~~~~N N~

~

(,',j "

.. ".

""...

.. "

• III

....

".

II ..

""

(,~, (,"

:. r·-(r',

(!", '.:t' '·D

r"-' . .0 r"-0

) cr·. -' .. 0 I:S:. If) r"-

(0 CI", r"-

0) (I) (0

(I) (0 I·D r '., (,) '.L' r"" -

• • If) ~. "

j' •

~ ... r·,., r"-

r"" r"-r"-

r·· .. I)) ('0 (1"', .-:r·, ''''', (T

', CI", ,:r', (1", (T

', (1"', (r', cr·, ,:r', ('~I '·f, (.)

I. (I LO ~i (.)

• •

.: ".1

N~~~~oomNM~~~OO -~N~N~~-m~~oo-~

~

('.J •

III ..

• ..

• III

.. ..

• ..

III III

II ..

.. "

.. •

• III

.. III

III (,) (':

' (0 ,:-t'o,

I~I

~m~~~~OO-~Q~~~m~OOOOOOOOOO~~M~~Q

• ·m-~

• ..... of r·· ... r·· ... r"-

r"-r"-

r·· ... 0) ((. (r·, (r·, .:r., IJ"', (T

', (,r', (T', I~', ,·.r·,

')"1 (T

', -:r', (,) 1

.(. (I~I I. (I [1-: ........ (I~' ..

" •

('~I

-NM~oomOOOON~-oom~oo~~mMOO~Mm~ ~m~

~

(',J •

" "

III ..

III ..

" •

• •

III "

" •

• ..

III •

" "

••

III I~·.J ('~I (0

(0

~

~~~~~~OOQM0M~~OO~OOOOOOOOOO~~M~~0 •• m-~

. _~~~~~~oooomm~mmm~mmmmmM~M~~-M ... M

0N

NO

O ~~m~OOOOOO-~Mm~~~mN~~~~~-~

M

('.J "

III"

...............

III •

.. •

.. •

• III

III ..

.. •

('~I I~I~I I.f"':' r·-r·-

~~~~~~OO~N~-N~~~OOOOOO~OO~~M~~Q

• .~-~

• _~~~~~~OOm0mm~mmmm~mmmM~M~~-M ... M

ZI-U:::Ct~

.W

.llJO

...... ::' lJJ l.LJ -I I--

~-

,..1 I--.......

C. W

W =. (I: Z

):: ...J (C

l-•

• P=I ,:q ::::.:: Ct~ (C

=, I-

'i ((, 'I

lJJ

~~~

~~-I...JI-~~

::::.:: O-NM~~OO~Q-NZZ...JI-UWO~OOZ

H-NM~~~~OO~--------NNNOOOOUWOWHO~

~-

I-~-

I-1-' I-

~-

I-~-

1-, .-1--. ~

-.-

I-I-

1--~-

1-' ~-. I-

() C .. C

) ~T': '1'': LI_ () ( • .:: f=t C

) f~~

Page 131: Characteristics of a packed distillation column for on

TINE T1 T2 T3 T4 T5 T6 T7

T '~ -' T1(1 Tl1 T12 T1:3 TiS T16 Ti::: T19 T2~i T21 T22 CONDo IN COND.OUT COLDE~EEF.: HOT BEEF.: ACCUr'lUL. FEEDF.:ATE COOLAHT REFLU::·:: DISTILL. CONDSATE F.:F F.: AT I 0

1425 76.1 -,-, .-, ~ 1" • &::.

76.9 77.1

,-!.-, ~ 1:~':::'. i

35 97.1

96.4 .: .• =: .-:. _It_'. "_I .-.-, .-, t,·.:· • .::.. :36. ;=: 66.9 51.1 1. :34 .-. .-,-:-.;.. •. .:' i

c,-. a -_',:t

l q . ...

.4

1426 76 ~-, .-, .. ( . .::. 77 ~-, .-. I" J • .::..

.. -,,-, .-~

~: .. :., . .::. 90.6 90.7 94.9 ':c-::- .--:' _' I • .::..

97.:3 3!::~. 7 9:=~ .. 5 ,:,q -' -" 97.9 9:=:.6 96.4 :3:=:.5 6:~:. 5 36.7 66. :;: 51.2 1 "-,.-.... ·~:t· .:. ':-"':' ,_I. ,_'I

1'::' . -' . 4

125

1427 76.:3 77.2 76.9 77.4 ~I-r -:t f !='. i

30.7 :-,,-. ...., '_1,_,. i

31 3[1. t. 94. ::: 97. ::: 9;:;.4 39.4 97.2 9~=:. t:

9::::. 5 36.4

.-.:, -::' C"_'. I

65.9 51.4

.-, .-,-"

.:.- •• ;.- f

1'::' . -" .~

.'"1"

76.2 77.2 77.1 77.1 -,':. ':' j '-'. -'

3~~1. 6 94.5 ~?

_" I

99. :~: 97.2

9:::.6 3:::: .. 5 9::!.4 51::!. 4 96

.-.-, .-, ':"~' •. :'t

:36. ? 65.6 C"1 t:" _I ••. _1

1.34 ::::.49 .5:'::

,-.'"1" '-1 1 .-. .~I ••• :.,

1429 ..... -{t:,

77.2 77 -,""':' ." ((.'"1"

9(1.7 90.4 9:3.9 96.4 3!::. 1 99. :3 97.4 9:::.5 9~::. :~:

97.:3 9::;.2 36.4

62.5

':11 • :::: 1. :32 .-: '-I~

.~1 II .~. f

1 ,-, • '" ~=' .. .'"t

:3.16

r'1EAt'4 76.12 -::'? .--::. ! I II ..::..

76. 9;=~ ...,..., ·-•. of ( ,. • '::'''1"

~::::~: II 52 3 .. ].66 9(1.64 94.62 37

99. :32 97.26 51!::. 66

9:::.7;::! 9(.92 9::~. 44 96. :::2

66.06 ~ .. '-11-:

._Il. :::.'=. 1.34

.. 57:~: II 1:':;7 .. • '"t

:~!. €174

o II f1!:!4 .. 152

4q "::' .. _ ..... C".'-'-'

• ._fC:I.~1

.41 .. !-(.-. II ..i '=:,:..

~444 .. :354 .. 11 .. (145 .. ~:1:=:9

i ~'~I • .. '-'&:.. .164 II 175' .. :396

.179

.141

.456 II ~:i55

o::"t:" • ._1._1

.164

.0116

.052

5E -i.:1:~; 6E-(i4

Page 132: Characteristics of a packed distillation column for on

1.0 N

r-l

~

M Mm~~

·~~N~ ~~~~0~~OONOO~N~ -~ ~~m6 6~Q-

~ ':r', c

o (" .• j

....... C

·) Lt .. ) ('.j 0

) !.n ._ .• r"-

Lf,) Ln

Lf)

~ ....

(1", CO C,') '::I" (0

(.,) '·0 L'-) CO

I

,....... I

(0

.... -'3:' -

(',j ("j -:j" LI") • (:;) ':j" r·· ... Lf) ..... i

~i ....... ('oj

..... i '-'.1 '-' •. 1 ..... , ('.j ('.j ...... 1 Lf) '3:' llJ ~ I,;tJ ':S', L .. .Ll ('.j

'-' J "

" "

II ..

" ,

..... -t "

" ..

" "

!I' ~

" "

" "

" "

!I' '"

"

,,(T'I I, :,,1

I °lj

"'.

',.f "

~oo

w

~oo~oo

NN

~

~oooo~ N~NNW~-

~

Z

..... i ....... 0

) (".1 r"-Lf) ....... '::1", ( .• j r .... '.(, ,:::;:, 'J', (-.j Ir, (.) r"-r"-

,:t ~ ('.j ~

.. (0 cr·, .: '.j "'t r"-

Lf) 'J', (1", ('.J (C

"

" ..

.. ..

" "

" "

.. ..

" "

" ..

• "

" ..

" "

" "

" ,,(I~I (,) r"-

L() (T

', 1.,(1 W~~~~OOQMOOQN~~OO~OOOOOO~OOW~N~~-

•• m

-0

::::: r"-r··-r"-r·· ... r·· ... I)) (0

0)) ,:r',

(T', CT', (1", CT', CT', ,'T', CT',

(1", ,'T', 'J', (1", c,~, '. Cr .-.", '. (I Ii') ....... (.)

• •

• (,~,

;t ('.j ....... ' . .0 ....... ~ -

If) 'I:t ('.j (.) cr·, -:t r"-('.j ' .. L)

If) ....... ' . .0 Lf) (.) ':1", r··-

(,~, '"9 t::-.... ::'

'.',1

" "

" ..

.. "

" "

" "

" "

" ""

""....

..".." 1,',1

1,'.1 l .. f • .I ~

1 . .:..1 "'t ' .. L) r"-

'·.0 r"-(I) ,:::;:, ('.J r·-

,::;:, ('.j C,) '.,(1 (0 r"-((, 0

) ((, CI) (I) '.,(1 ';:1", (,',j ' . .0 '.J).......

• • If) ..... i -t

• ....... ~

~~~~oooooo~m~~~~~~~mm~Mw0~m-M ••• 'I:t

MN

....... ~ ....... ~NOO M~-~oo-mM~OO~M~N~MN'I:t~

~

(t) ..

" "

.. "

""

""......"".."""......,,"" ('~I

(,) ':0 Lf)

r·· ... 'I:t~~~~OOQNOOQN'I:t~OO~OOOOOO~OO~~N~~ ......... m

-~

• ....... ~

~~~~oooooo~~~~~~~~~~~mM~M~~"""'M ••• M

N~NOONoomNNNmm~~NM'l:tOO WMNOO~~N'I:t~

N

('~I "

" "

.. "

" "

.. "

.. "

" "

" "

.."

""...."".. (I) (.) r··... '.,0

1,,0 ~ L'-) r··· .. ' . .(1 r"-

CI) ,:::;:, C

,) CT', ,:::;:, ('.J ~ '.J) (0

) r·· .. CO (0

(0 C

(I CO ' . .(1 (1", .......

' . .0 Ii')....... •

• Lt .. ) ....... -t •

-~~~~~oooooom~m~mm~~m~~~M~M~m-M ••• M

....... ~ (.) (1",

-.j" 0) (T

', Lf) (0 c,~, ':r', CT', "1'

': '.J r"-":I"

-.:1" ....... (,~, ":I" -

~ 'I:t ~ r"-

-(I)

" "

" "

" "

" "

• •

""

"."

"..."

." f'") (t~1 r"-r"-

v "1'~~~~OO~MmQN~~m~OOoom~oo~mN~m-

•• m

-"1

' •

-~~~~~oooooomm~m~~~~m~~~M~M~m ....... M

••• M

,;s:, ('.J 0

) '·0 (1",

....... (1", '1" ":I" '1" r-.-I)) _

If) 'I:t "'Cr ,:r', '.(1

(.) '·.0 ,:r', "1' .;:r·, If) ('.J '.(1

r"-.......

('~I"

" "

• •

" II

• •

" "

• "

" "

" •

" •

• II

• (.:_

(I~I r"-r·.. (.)

... t ' . .0 r·-' . .0 r·· .•

(0 -

(.:, ,:::;:, ,:::;:, (.) 1.1') r·-(1", r·· ... 0

) ((I 0

) r·-(0

'.,(1 (0

('.J '.,(11.1")""'" •

• If) ....... "1' •

..... r·-r·· ... r"-r·o. r··· .. (0;:. (0

'-:1", (T

', (1", '::1", 'J', 'J', (1", (r', (T

', ':r', 'J', 'J', 'J', (.) ' . .(1 (0') '.(, In ....... (.)

•• (':'

Z I-

Ct:: Ct:: • lLJ

• LLI 0 ...... =

'LL

lW......I1

-1-

......II-.......

,=, W

W =, (C

Z

::-:: ......I 'I: l-•

• !XI !XI:::::: Ct:: 'I

=, ....... ((I 'I

W

~~~

~~......I......II-~~

~

Q

....... NM~~OO~~-NZZ~I-UWO~OOZ

............ ('.j (.:, '1" L(') ' . .0 r"-(0

) (T', .....

... .. i ............ i

..... ....... .......

....... ( .• J (".J ( .• J ,=, ,=, ,=, ,=, c.) LLJ ,=, W

....... ,=, lL..

~ .. -~-

1 .. -~-

1-.. 1--.... I· .. · ~

-1'''-

1--.... 1--I-

1-.. 1--~-. I-

1--~-

I-I· .... 1--

(,) (,,) (,,) I n: ll. (,,) ft::

~ () Ct::

Page 133: Characteristics of a packed distillation column for on

TI j'1E Tl T2 ..,...-. t .:..

T4 .,-t:" I·_'

T6 T7

T9 T1l1 Tl1 T12

Ti5 T16 Tlf: T19 T20 T21 "'T"-"-' f~~

COt-iD. I t·~ COt·iII. OUT COLD BEEF.: HOT BEEF.: FiCCUt·1UL. j-EEDF.:ATE COOLANT ~:EFLU::·;:

DI:=;TILL. Cm·mSATE F.:F F.:AT I 0

14:35 ...,.- 1 ( I::a ....

77.1 -".- .-{t·. r:. 77.1 ~!-, .-. ( '':1 • .::.

79 11 ~::i -1'-' .-. ,:,::::. .. .:. :-.. - ~ ·:,c, ...

9~:1. 1 32 .. 3

96. :~: 9:=:.6 97.1

9:=:. :=~ 9:3.1 51::::. :~:

96.5 .-,.-, .-. . ;"1=' •. ;..

62.4 :36.9 67.1 51.1 1. :36 .-, .-,~

';" .. .:' .. .14 .4 4. ~~19

14:~:6 76.1 77 76. ::: 77

90.1 92. :3 9:3.7 96. :3

97. :=: 9::::.4 96.2 :37.7 61. !:: 36.9 66.6 51 1 .-,.-,

a • .:-.::;. .-. ,-,~

':" •• .:. J"

.15

.4 .-, :::, ... ';". -.~

127

14:~:7 76.1 77.1 ~ .. - -:r f c'. i ....-. { { -,,-. .-. f !:' • .::.

96

97.7 51!::. ::: 96.4 .-.? ..., .;,- J • i

61 37.1 .--. tl{

51. 1·

.14

of ... ·-.1-' .i1oof".:"I~

76. :3 77.2 -:r .- !-. t' 1:-. ':.

77

-"=4 !:" f _' • ,_I

9~J. 4 9:3 95.1 97. :3 99.1 1=t'7 _. I

9:::.4 37.6 9:=:.4 96.4 ,-,~ .., .:'1 ( ...

62.6

66.6 50.9 1. 31 .-.. -.-, .~t •• ;;_ t'

.14

.4

14:;:9 76.2 77.1 76.9

7:::.4 79.6 '-1'-' ."" ~=I'::'. "'t :-.-, .,-'':1 ( • C'

91.1 94. :=: 97 9:::.4 39.4 97.a.1-

96. :3

64.4 :37. 1 66.5 51.4 1. :31 :3.26

it:" • J. _I

.4 :3.77

76.16 77.1

??1 --:"11-, '-1.'-f ,:~. ~:::1

?9~6 ;=:2. 12 ;'::6. 1216 90.34 9:2.92 94.62 96. :::6

97.06 9:::.54 9~:~. :34 ,3!::.7 37. ;::4

96. :36 .-:.-, .:t ... _It • :_!~

62.44

.-.- ...., ,-Cltl .... t~

51. 1

C"?C' • ,_'I ,_I

.145 • :399 :::.969

,-. T"t '':' • .1.' a

• ~~1::::9 · ~~i71 .114 .17:3

.122

1. l~Jl .451 1. [199 ~ ,o! ...,.-, l.s'"ti~

.991 • :371 ~ 219 · (i55

.. 17:3 • 2~f( .. ~:1:=~4 · 114 .261 1.26 • 1

,-,~

• .:: i

.02 • (152

5E -~:14 • 120:3

Page 134: Characteristics of a packed distillation column for on

00

N

r-I

~~m

M wm~

.m~mNM~OON ro~mm-

-mm~m~

NO

O-~-0M

A~-OOoo~MQ~ ~~oomm

~M000Q0-m~N --I~

" .......

or-f ':S:I"'T

II "

"I. (I .,.-t (".j

.,...... (s) ':::::1 (',j -o

f _o

f I~) ("11 ("t.' I:S:' (I) "':j" .,.. ...........

..-t ':S:I ':S)

W::::' LLI (o,J ((I

.., .,....-1 (',j ... t

" 1~1 " (I)

N~~N

00 w

ro~~~~

w N~~OO~N~-

00 ZMMm~N-~-Mm~mmmOOmm~~~Wm-mmN~mN

-(1

:"

""

""

""

"

""

""

""

" It

"""

" ..

tt"

"

.f'~I(')I .. Cr(O

.......

LLJ ' . .0 r"-' . .0

r"-(S) (.) (

0 (".1 ~ ....

' . .0 CO (,) ,]"', r"-

(0

(0

(0

(0

(0

' . .0 r"-oo:j-r·-

1.("") -•

• lCo ~ ... ~

• ::::::: r"'-r.-

r"-r"'-(0

0) ((I (T

', cr·, (T

', (r', (r', cr·, (r', cr·, (T', (1"',

,.T·, (r', (T

', ,-.-, '. () (", '.)) Lf) .,. .... (.)

• •

• (.)

~mm-~Nm~~NOO~ mmmmm~~~-NM mw~

M

V

" ..

.. ..

.. ..

II "

" "..

.."......"......"..

.. (I~I (I~I r"-IJ

'I IJ

'I ~~~~ooN~NN-~OOmm~oooooooooo~OO~~~-

•. ~-~

• _ r"-r"-

r'·-r"-0

) (I) (r', cr', (T', (1",

"", ':T', ,"T', cr',

(1"', (1", ':T', ':T', (T', (r', (.) '·D

(.-, '. (I IJ") -(':,

• •

• (',J

Mm

M

~N~MNW ~~~~mNOOm~ N~~~~

-.:t "

" "

" ....

"..

.."..

.. "

.. ('~I (.) (.) (r't ((.

~ ' . .0 r-.-r"-

CO ....... ·;t ('oj (.,J -r·-

(I) (r', cr', r-.-(0

0) I)) (0

CO '.(1 r'·.-

LI) r"-Lf) -

• • Lf:r

~ ....... t •

... -, r"'-r'·-

r"-r·,.-(,) ((I (r', q., cr·, ,"T', ,"T', ,T', (T

) ':T', (T', ,"T',

(T', ':T', ':T',

(1"', (,~, ',.0 (,~, ',Cr LI-:' ....... C,)

• (',j

(.,J ('"J ~ cr·, '·.C,

~ .... '.(, .... j-~.J

1 .. (, ' • .(1

... ·t r,·.-'.[, -

(,., ~ If) ( .• J ( .• J

,.[, ('.J r"-If)

v "

" ..

.. .... .

.. "

.... .."...."..

.. (.:-(I:' (0 ':0

----~~~~~QMQN-~OOmm~oooomoooo~~m~~-

•• m-~

• _~~~~oooommm~m~m~m~~~~~M~M~m-M ..

·M

_ ('.j (',j CT', "':j-

(.,J LCt ... ·t (,) (.,J ..... "t

If) ~ (T', ~

CO ']"', 0) (,~, (,~,

(.,j -Lr:r ~ r~·::

• _ ~-:,

'::t ..

.. ..

.. ..

.. ..

" ..

.... ."."....."

..." t, .....

I. 1 ,I r"-1..'-'

t, ',J ~~~~~m-~N-~OO~m~oooooo~oo~~~~~-

•• m-~

• ........ r·· ... r·,-

r"-r··-r·· ... (I) ((I .:r .•• :r., fr' •• :r., .:r', .J",

(r" .:r'1 .:r't ',.', ',,', (T

', (T', (,) -, (I ('~I

1.":1 lJ-:, o

r-f (':_

• •

(I)

Q-MmN~m~ ~~NOOmMOO~mOO~mOOM

M-~

~

"=:t ..

.. •

• •

.... .......................

.. (,:. (I:' r"-r-.-

7 ~~~W~OO0M--~OOOOm~oooooo~oo~~m~~-

•• m-~

• "-4

r'·-r"-r',.-r··-r··.-'-0

(I) ,r', ']"', ,J', cr·, cr·, cr', ,J', cr·, (1"', (T

', ']"', ,J', cr·, (,., ' . .0 (,~, '·0 Lf")

.-4

('.J •

• • (,-,

Z

I-Lt:: Lt::

• W

. W C

' t .... =, LU LU .....J I-

I-_J I-

I-t C

' W W

::r 'I Z

::.:: .J

'I l-

• ..:ct.:ct::::: Ct:: 'I: =,

I-t ((I 'I: W

A

AA

~A.....J.....JI-ACt::

E

~-NMm~oom~-NZZ~I-UWO~OOZ

H-NM~m~~OO~--------NNNOOOOULUOLUHO~

\---\--I-

1--1---

1--1--

1--.--

1·-1--

.-1--

1---....... -

.-.-

1---I-I-

C) C

, c, :c (I: Lt. C, (I::: ~"=t (.:, (t~

Page 135: Characteristics of a packed distillation column for on

T It'lE Ti T2 T:3 T4 T5 T6 T7

T9 T10 T11 ""!"" ... -, f.La::.

Tl:3 TiS r16 T1::: T19 T20 T21 T22

1445 -, ,- co It::·. ,_,

77.4 77.1 -,.-. ~ f :=1. f

91..:t 96.?

9:=:.6 96.4

C:;:Jt·4r, • I t·~ :37 • 6 cot·m. OUT 64 COLD:BEEF.: 37. 5 HOT BEEF.: ACCUNUL. FEEDF.:ATE COOLANT

DI~;TILL. CI]NDSATE F.:F F.: AT I (I

,- ,- .-, btt. ~ 51.9 1. :36 .-.. -.~ ,,:t •• .:. f

• 19 .4

1446 ~ ,- --. { t: •• ,.-

77.5 ..,-, .-, ( ... .::. 79.1

9(1. :3 92.1 92.2 91.2 96. :3 9:3.2 ':'~=J ,::, -' ,_'. -' 99.6

99

;~q -' -' -.-' .-, -:.- f • ,=. 64.1 .-,-, ... '_'; • "'t

66.1 C'.-. ,_I':':

1. :~:6 .-, .:.-, .;... ,_II

C'~ ...... f

.19

.4 2.96

129

1447

~--. ,-{I" • tl

{? .1 7':' :::, , -' . -' 9~j. 7 92 92 91 96.4

.~.::, C' _' _' • ,_I

97. !:: 9;=!.6

97.4 9:=:.6 96.7 .-,-, t-, . .:. i • ':'

64.1 :36.7 65.9 !::,.-, ,-, _'a:.:. ,_I

1. :34 .-, ,-,~

':" .. :.' .. .19 .4 :3.05

144::: 76.7 -,-, ,-, I" ... \:.

77.2

91.1 ,:,'::- '::, _'","-. -92.2 91.2 96.6

51!::. 9 99.5 97'.5 9~::!. ? 9:::. :3

96.5 :3:::.4 64. ::::

66.2 C'.-. .-, "_J'::' • . :J 1 .:: .. ~ .. --' :~:. :~:7

.·19

.4 :~:. 07

--. ,-.- .., ,- .-.-. {t: •• t:, ;' t,. 1::1':::'

77 • 6 77 . 5::: 77.2 77.16 :::I-Z1.5 79.64 ~:::4. -;-' ;=::3. ;:~4 31.6 9(1.4:::: 92. :;: 92. 16 92. :::: 92. 1 !=!

91 • ::: 91 • 22 96.9 96.5:=: 51!:! • :~: 3::~. 24

97.6 97.52

51::! • 6 9;:; ~ 52 9::~. 7 9;:; . ;:~2 51::: . 2 97 • 94 9::! • 4 9;::. 64 36.2 96.52

'':;.Ii. ~ (1:::4

· ~)55 .727

-::ri ·:t • i J. ,_~

1. 1 ~)5 .1i4 .11

· ~355 .045 .055 .217 .. ! 14 .. 14~:, .. 1.3

.219

:~::=:. 4 64. :~: 64. 16 . 134 :36 66.9 52. :3 1 .:: .. ~ . --" .-. ,-.-, ,;'1. ':.. i'

II 1 ::: .4 :3. 1:~:

:36. 7'::1 • 7'26 66.26 • :37::: 52.16 :1195

:~: . :~:71 (1 ~---:t"-t

II "_I f .':'1

" 19 .4 ~3. (12::::

5.3E-[13 4.9E-(r3 '3E -tZ14 • (1::~41

Page 136: Characteristics of a packed distillation column for on

T~ .~

T4 T5 T6 T7 Tn 10 TQ I~

T10 Tl1 T12 T13 TIS ~1~ 1.0 T18 T19 T20 T21 T22 CONDo IN COND.OUT COLDBEER HOT BEER ACCUMUL. ~EEDRATE COOLANT REFLUX DISTILL. CONDSATE RF RATIO

MEAN S.D. 76.48 .38359 77.48 .33523 77.095 .29159 79.403 3.8589 82.152 5.3804 83.595 5.4780 85.599 4.8121 88.089 3.8077 90.187 .65957 93.524 2.1263 95.177 2.7142 96.705 2.5719 98.255 2.0228 96.745 1.2249 98.401 .53685 98.330 98.677 97.539 98.370 96.367 ~7 o~~ ~J .v~~ ~~ Q~~ O~'J~~

36.116

.40164

.35931

.95206

.49780

.40438

.78865 1.8953 .53708

65.602 .99843 51.61 .73990 1.3379 .03698 3.4109 .05737 .57310 .01362 .16029 .02370 .41416 .01564 3.6611 .59935

130