iec 62271-200 en

8
Power Transmission and Distribution  We are ready: IEC 62271-200 The new switchgear standard

Upload: firman-sasongko

Post on 10-Apr-2018

374 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: IEC 62271-200 en

8/8/2019 IEC 62271-200 en

http://slidepdf.com/reader/full/iec-62271-200-en 1/8

Power Transmission and Distribution

 We are ready: IEC 62271-200The new switchgear standard

Page 2: IEC 62271-200 en

8/8/2019 IEC 62271-200 en

http://slidepdf.com/reader/full/iec-62271-200-en 2/8

Standards for all

Switchgear are important nodal points

in modern power distribution. Corre-

spondingly important is their reliable

functioning, a clearly defined switch-

ing behavior according to specified

parameters as well as the protection of

personnel and protection against oper-

ational interruptions when an overload

occurs.

The International Electrotechnical

Commission (IEC) has taken up thetask of developing the required speci-

fications, their worldwide standard-

ization and further development. The

same applies to IEC 62271-200 – the

new standard for medium-voltage

switchgear.

As one of the first manufacturers,

Siemens has implemented these

requirements and already offers the

complete product range of air-insu-

lated and gas-insulated switchgear

today, type-tested according toIEC 62271-200.

2

IEC 62271-2

EC 62271-200IEC 62271-200

IEC 62271-200IEC 62271-200

Page 3: IEC 62271-200 en

8/8/2019 IEC 62271-200 en

http://slidepdf.com/reader/full/iec-62271-200-en 3/8

IEC 60298 – for four decades this abbre-

viation was the decisive factor for the type

testing of metal-enclosed switchgear. In

the meantime there are tens of thousands

of switchgear panels of the primary and

secondary distribution level based on this

standard in use – certified according to

the mandatory part of the standard and,

if required, according to optional tests.

The passing of the following tests was

obligatory in order to identify switchgear as

type-tested:

Dielectric test to verify the insulation

level of the switchgear (tests with rated

lightning impulse withstand voltage and

rated short-duration power frequency

withstand voltage with the specified

values depending on the respective rated

voltage).

Temperature rise tests to verify the

current carrying capacity with rated normal

currents.

Peak and short-time withstand current

tests to verify the dynamic and thermal

current carrying capacity of the main and

earth circuits; the tests are performed with

rated peak short-circuit current or rated

short-circuit making current or rated short-

time current or rated short-circuit breaking

current.

Switching capacity test to verify the

making/breaking capacity of the installed

switchgear.

Mechanical function test to verify the

mechanical functions and interlocks.

Degree of protection tests to verify the

protection against electric shock and foreign

objects.

Pressure and strength tests to verify

the gas tightness and pressure resistance for

gas-filled switchgear.

There is also the possibility of voluntarily

certifying switchgear for resistance to inter-nal arc faults and for personal protection.

Manufacturers and operators can select the

criteria which are relevant to them from the

following six criteria and have them tested.

Criterion 1: 

Doors and covers must not open.

Criterion 2:

Parts of the switchgear must not fly off.

Criterion 3:

Holes must not develop in the external

parts of the enclosure.

Criterion 4:

Vertical indicators must not ignite.

Criterion 5:

Horizontal indicators must not ignite.

Criterion 6:Earth connections must remain effective.

In order to guarantee safe access to the

individual switchgear components, e.g.the

incoming cable, without isolating the busbar,

the IEC 60298 standard differentiates bet-

ween three types of compartmentalization

that serve exclusively as protection against

electric shock.

Metal-clad switchgear: Division of the

switchgear panel into four compartments

(busbar compartment, switching-devicecompartment, connection compartment

and low-voltage compartment); partitions

between the compartments made of sheet

steel, front plate made of sheet steel or

insulating material.

Compartmented switchgear: Division of

the switchgear panel same as for metal-clad

switchgear, but with the partitions between

the individual compartments made of insu-

lating material.

Cubicle-type switchgear: All other typesof construction that do not meet the above

features of the metal-clad or compartmented

designs.

In this context, access to the then common

minimum-oil-content circuit-breakers for

maintenance work without longer opera-

tional interruptions was of prime importance

because of the limited number of operating

cycles. Therefore, with switchgear in metal-

clad or compartmented design, the busbar

in the busbar compartment and the incom-

ing cable in the connection compartmentcould remain in operation. With a cubicle-

type design, the incoming cable had to be

isolated, but the busbar itself could remain

in operation.

Retrospective

3

Page 4: IEC 62271-200 en

8/8/2019 IEC 62271-200 en

http://slidepdf.com/reader/full/iec-62271-200-en 4/8

Although the old IEC 60298 standard

was very helpful, in time it was super-

seded by the technological progress.

Above all, the appearance of mainte-

nance-free vacuum circuit-breakers,

with operating cycles far exceeding

the normal number, made frequent

access to this circuit-breaker no longer

of prime importance.

The vacuum arc-quenching principle

is technologically so superior to otherarc-quenching principles that the

circuit-breaker can be fixed-mounted

again. This resulted in the first-time

use of gas insulation with the impor-

tant features of climatic independence,

compactness and maintenance-free

design. However, both technologies –

the vacuum arc-quenching principle

and gas insulation – were not ade-

quately taken into account in the exist-

ing standard.

Therefore, at the end of the nine-ties, the responsible IEC committees

decided on the reformulation of the

switchgear standard, which finally

came into effect as IEC 62271-200 in

November 2003. At the same time the

old IEC 60298 standard was withdrawn

without any transition period.

Four key features are of special note with

the new IEC 62271-200 standard:

1. Changed dielectric requirements

According to IEC 60298, two disruptive

discharges were permitted in a series of

15 voltage impulses for the test with rated

lightning impulse withstand voltage. Ac-

cording to the new standard, the series

must be extended by another five voltage

impulses if a disruptive discharge has oc-

curred during the first 15 impulses. This canlead to a maximum of 25 voltage impulses,

whereas the maximum number of permis-

sible disruptive discharges is still two.

2. Increased demands on the circuit-

breaker and earthing switch

In contrast to the previous standard, the

switching capacity test of both switching

devices is no longer carried out as a pure

device test. Instead, it is now mandatory

to carry out the test in the corresponding

switchgear panel. The switching capacity

may get a negative influence from thedifferent arrangement of the switchgear

with contact arms, moving contacts,

conductor bars, etc.

For this reason, the test duties T100s and

T100a from the IEC 62271-100 standard

are stipulated for the test of the circuit-

breaker inside the switchgear panel.

3. New partition classification

The new partition classes PM (partitions

metallic = partitions and shutters made

of metal) or PI (partitions nonmetallic =partitions and shutters made of insulat-

ing material) now apply with respect to

the protection against electric shock dur-

ing access to the individual components.

The assignment is no longer according

to the constructional description (metal-

clad, compartmented or cubicle-type

design), but according to operator-related

criteria (Tables 1 and 2).

4. Stricter internal arc classification

Significantly stricter changes have also

been implemented here. The energy flow

direction of the arc supply, the maximum

number of permissible panels with the

test in the end panel and the dependency

of the ceiling height on the respective

panel height have been redefined. In

addition, the five following new criteria

must always be completely fulfilled (no

exceptions are permitted):

1) Covers and doors remain closed.

Limited deformations are accepted.

2) No fragmentation of the enclosure,

no projection of small parts above

60 g weight.

3) No holes in the accessible sides up

to a height of 2 meters.

4) Horizontal and vertical indicators do not

ignite due to the effect of hot gases.

5) The enclosure remains connected to

its earthing parts.

For the internal arc classification ofsubstations with and without control

aisle, the testing of the substation with

installed switchgear is mandatory in the

new IEC 62271-202 standard. The clas-

sification of the substation is only valid

in combination with the switchgear used

for the test. The classification cannot be

transferred to a combination with an-

other switchgear type as each switchgear

behaves differently in the case of an in-

ternal arc (pressure relief equipment with

different cross-sections and pickup pres-

sures, different arcing conditions becauseof different conductor geometries).

New specifications –new challengesOverview of IEC 62271-200

4

Page 5: IEC 62271-200 en

8/8/2019 IEC 62271-200 en

http://slidepdf.com/reader/full/iec-62271-200-en 5/8

Loss of servicecontinuity category

When an accessible compartment ofthe switchgear is opened: …

Constructional design

LSC 1 … then the busbar and thereforethe complete switchgear must beisolated.

No partitions within the panel, nopanel partition walls to adjacentpanels.

LSC 2 LSC 2A … then the incoming cable must beisolated. The busbar and the adjacentswitchgear panels can remain inoperation.

Panel partition walls and isolatingdistance with compartmentaliza-tion to the busbar.

LSC 2B … then the incoming cable, thebusbar and the adjacent switchgearpanels can remain in operation.

Panel partition walls and isolatingdistance with compartmentaliza-tion to the busbar and to the cable.

The notation IAC A FLR, I and t contains the abbreviations for the following values:

IAC Internal Arc Classification

ADistance between the indicators 300 mm, i.e. installation in rooms with access forauthorized personnel, closed electrical service location

FLR Access from the front (F), from the sides (L = lateral) and from the rear (R)

I Test current = rated shor t-circuit breaking current (in kA)

t Internal arc duration (in seconds)

Type of accessibilityto a compartment

Access features

Interlock-based Opening for normal operation andmaintenance, e.g. fuse replacement.

Access is controlled by theconstruction of the switchgear,i.e. integrated interlocks preventimpermissible opening.

Procedure-based Opening for normal operation andmaintenance, e.g. fuse replacement.

Access control via a suitable pro-cedure (work instruction of theoperator) combined with a lockingdevice (lock).

Tool-based Opening not for normal operation ormaintenance, e.g. cable testing.

Access only with tool for opening,special access procedure(instruction of the operator).

Nonaccessible Opening not possible / not intended for operator,opening can destroy the compartment.

This applies generally to the gas-filled compartments of gas-insulatedswitchgear. As the switchgear is maintenance-free and climate-indepen-dent, access is neither required nor possible.

Table 2

Overview of the characteristic values

The IAC classification describes a success-

ful test. It results from the definition of

the degree of accessibility, the possibili-

ties of arrangement inside a room, as

well as the test current and test time

(Table 3).

Medium-voltage switchgear in the pri-

mary and secondary distribution level is

generally classified with degree of acces-

sibility A. This means they are intendedfor use in rooms that are only accessible

to authorized personnel (closed electrical

service locations).

Switchgear that is accessible by general

public has the degree of accessibility B

(distance of indicators = 100 mm) and

polemounted switchgear has the degree

of accessibility C (indicators below a

tower in an area of 3 x 3 m).

Consequences for operators

With the new IEC 62271-200 standard,the following conditions must be satisfied

by the switchgear operators:

Already existing switchgear can still be

operated in accordance with IEC 60298.

However, new switchgear must fulfill the

IEC 62271-200 standard in order to avoid

any resulting legal disadvantages. A situ-

ation which has a number of advantages.

For example, the comparison and evalu-

ation of switchgear features is now more

transparent. But also from an economic

point of view, they are an investment inthe future.

Table 1

Table 3

5

Page 6: IEC 62271-200 en

8/8/2019 IEC 62271-200 en

http://slidepdf.com/reader/full/iec-62271-200-en 6/86

With intensive development work and

comprehensive tests, Siemens has al-

ready implemented the performance

features requested by IEC 62271-200 at

an early stage. As one of the first man-

ufacturers, we offer the entire product

range of air- and gas-insulated switch-

gear for medium-voltage applications

in primary and secondary distribution

systems today – type-tested according

to the new IEC 62271-200 standard.

A greater margin for your safety

Not only that: the more stringent require-

ments of the dielectric type tests have

been implemented without exception.

All switching capacity tests for the various

circuit-breakers and earthing switches

were performed in installed condition,

i.e. inside the switchgear panel with the

associated arrangement of the conducting

path, contacts, etc. This means for you as

the operator: One hundred percent cer-

tainty that this combination of switchgearand switchgear panel functions reliably.

All switchgear series were also tested for

the internal arc classification in accordance

with the new standard. The maximum

permissible number of test objects (gener-

ally two or three panels) as well as the

changed direction of energy flow of the arc

supply significantly increased the demands

on the switchgear panels. All switchgear

certified in accordance with IEC 62271-

200 satisfies all five criteria required for

the internal arc test without exception.

Siemens medium-voltage switchgear

therefore corresponds to the IAC A FLR

classification for short-circuit currents up

to 50 kA (depending on the system type)

and short-circuit times up to one second.

Ready for the future – with Siemens

With the fulfillment of the new IEC 62271-

200 standard, all our switchgear types

represent the latest state of development

in technology, safety and reliability.

Without exception, Siemens switchgear

fulfills the internal arc classification as vital

proof of the personal safety. Our switch-

gear therefore also meets the require-

ments of CAPIEL – the European associa-

tion of national switchgear manufacturerassociations: “This is now a type test and

not anymore subject of agreement be-

tween manufacturer and user.”

An investment in the switchgear technol-

ogy made by Siemens is a profitable invest-

ment in the future.

With the successfully verified internal arc

classification, IAC A FLR up to 50 kA and

one second arc duration, our switchgear

offers maximum possible personal protec-

tion. Our type-tested series also entirelyfulfill the specifications of IEC 62271-200

in all aspects. In addition, they guarantee

the highest possible degree of operational

reliability and therefore an extremely low

failure rate.

 Air- and gas-insulated switchgearfrom Siemens in accordance withIEC 62271-200We are ready – to make you ready as well

Page 7: IEC 62271-200 en

8/8/2019 IEC 62271-200 en

http://slidepdf.com/reader/full/iec-62271-200-en 7/8

   O   v   e   r   v   i   e   w    o

   f   S   i   e   m   e   n   s   s

   w   i   t   c   h   g   e   a   r

   *   M   a   x   i   m   u   m    p

   o   s   s   i   b   l   e   I   A

   C   c   l   a   s   s   i   f   i   c   a   t   i   o   n

   D   i   s   t   r   i   b   u   t   i   o   n

   l   e   v   e   l

   I   n   s   u   l   a  -

   t   i   o   n

   D   e   s   i   g   n

   L   o   s   s   o   f   s   e   r   v   i   c   e

   c   o   n   t   i   n   u   i   t   y

   P   a   r   t   i   t   i   o   n

   c   l   a   s   s

   I   n   t   e   r   n   a   l   a   r   c   c   l   a   s   s   i   fi  -

   c   a   t   i   o   n   *

   S

   w   i   t   c   h   g   e   a   r

   t

   y   p   e

   B   u   s   b   a   r   s   y   s   t   e   m

   V   o   l   t   a   g   e

    (   k   V    )

   S   h   o   r   t  -   c   i   r   c   u   i   t

   c   u   r   r   e   n   t    (   k   A    )

    1   s

   3   s

   R   a   t   e   d   c   u   r   r   e   n   t ,

   b   u   s   b   a   r    (   A    )

   R   a   t   e   d   c   u   r   r   e   n   t ,

   f   e   e   d   e   r    (   A    )

   P   r   i   m   a   r   y

   G   a   s  -

   i   n   s   u   l   a   t   e   d

   E   x   t   e   n   d   a   b   l   e

   L   S   C   2   B    (   p   a   n   e   l   s

   w   i   t   h   o   u   t   H   V   H   R   C   f   u   s   e   s    )

   L   S   C   2   A    (   p   a   n   e   l   s   w   i   t   h

   H   V   H   R   C   f   u   s   e   s    )

   P   M

   I   A   C   A   F   L   R   3   1 ,   5   k   A ,   1   s

   N   X   P   L   U   S   C

   S   i   n   g   l   e

   1   5 ,   0

   2   4 ,   0

   3   1 ,   5

   2   5 ,   0

   3   1 ,   5

   2   5 ,   0

   2   5   0   0

   2   5   0   0

   2   5   0   0

   2   0   0   0

   L   S   C   2   B    (   p   a   n   e   l   s

   w   i   t   h   o   u   t   H   V   H   R   C   f   u   s   e   s    )

   L   S   C   2   A    (   p   a   n   e   l   s   w   i   t   h

   H   V   H   R   C   f   u   s   e   s    )

   P   M

   I   A   C   A   F   L   R   2   5   k   A ,   1   s

   N   X   P   L   U   S   C

   D   o   u   b   l   e

   2   4 ,   0

   2   5 ,   0

   2   5 ,   0

   2   5   0   0

   1   2   5   0

   L   S   C   2   B

   P   M

   I   A   C   A   F   L   R   3   1 ,   5   k   A ,   1   s

   N   X   P   L   U   S

   S   i   n   g   l   e

   4   0 ,   5

   3   1 ,   5

   3   1 ,   5

   2   5   0   0

   2   5   0   0

   L   S   C   2   B

   P   M

   I   A   C   A   F   L   R   3   1 ,   5   k   A ,   1   s

   N   X   P   L   U   S

   D   o   u   b   l   e

   3   6 ,   0

   3   1 ,   5

   3   1 ,   5

   2   5   0   0

   2   5   0   0

   L   S   C   2   B

   P   M

   I   A   C   A   F   L   4   0   k   A ,   1   s

   8   D   A   1   0

   S   i   n   g   l   e

   4   0 ,   5

   4   0 ,   0

   4   0 ,   0

   4   0   0   0

   2   5   0   0

   L   S   C   2   B

   P   M

   I   A   C   A   F   L   4   0   k   A ,   1   s

   8   D   B   1   0

   D   o   u   b   l   e

   4   0 ,   5

   4   0 ,   0

   4   0 ,   0

   4   0   0   0

   2   5   0   0

   A   i   r  -

   i   n   s   u   l   a   t   e   d

   E   x   t   e   n   d   a   b   l   e

   L   S   C   2   B

   P   M

   I   A   C   A   F   L   R   4   0   k   A ,   1   s

   N   X   A   I   R

   S   i   n   g   l   e

   1   2 ,   0

   4   0 ,   0

   4   0 ,   0

   3   1   5   0

   3   1   5   0

   L   S   C   2   B

   P   M

   I   A   C   A   F   L   R   4   0   k   A ,   1   s

   N   X   A   I   R

   D   o   u   b   l   e

   1   2 ,   0

   4   0 ,   0

   4   0 ,   0

   3   1   5   0

   3   1   5   0

   L   S   C   2   B

   P   M

   I   A   C   A   F   L   R   2   5   k   A ,   1   s

   N   X   A   I   R   M

   S   i   n   g   l   e

   2   4 ,   0

   2   5 ,   0

   2   5 ,   0

   2   5   0   0

   2   5   0   0

   L   S   C   2   B

   P   M

   I   A   C   A   F   L   R   2   5   k   A ,   1   s

   N   X   A   I   R   M

   D   o   u   b   l   e

   2   4 ,   0

   2   5 ,   0

   2   5 ,   0

   2   5   0   0

   2   5   0   0

   L   S   C   2   B

   P   M

   I   A   C   A   F   L   R   5   0   k   A ,   1   s

   N   X   A   I   R   P

   S   i   n   g   l   e

   1   5 ,   0

   5   0 ,   0

   5   0 ,   0

   4   0   0   0

   4   0   0   0

   L   S   C   2   B

   P   M

   I   A   C   A   F   L   R   5   0   k   A ,   1   s

   N   X   A   I   R   P

   D   o   u   b   l   e

   1   5 ,   0

   5   0 ,   0

   5   0 ,   0

   4   0   0   0

   4   0   0   0

   L   S   C   2   B

   P   M

   I   A   C   A   F   L   R   3   1 ,   5   k   A ,   1   s

   S   I   M   O   P   R   I   M   E

   S   i   n   g   l   e

   1   7 ,   5

   3   1 ,   5

   3   1 ,   5

   3   1   5   0

   3   1   5   0

   L   S   C   2   A

   P   M

   I   A   C   A   F   L   R   2   5   k   A ,   1   s

   8   B   T   1

   S   i   n   g   l   e

   2   4 ,   0

   2   5 ,   0

   2   5 ,   0

   2   0   0   0

   2   0   0   0

   L   S   C   2   B

   P   M

   I   A   C   A   F   L   3   1 ,   5   k   A ,   1   s

   8   B   T   2

   S   i   n   g   l   e

   3   6 ,   0

   3   1 ,   5

   3   1 ,   5

   2   5   0   0

   2   5   0   0

   L   S   C   1

   P   M

   I   A   C   A   F   L   1   6   k   A ,   1   s

   8   B   T   3

   S   i   n   g   l   e

   3   6 ,   0

   1   6 ,   0

   1   6 ,   0

   1   2   5   0

   1   2   5   0

   S   e   c   o   n   d   a   r   y

   G   a   s  -

   i   n   s   u   l   a   t   e   d

   N   o   n  -

   e   x   t   e   n   d   a   b   l   e

   L   S   C   2   B    (   p   a   n   e   l   s

   w   i   t   h   o   u   t   H   V   H   R   C   f   u   s   e   s    )

   L   S   C   2   A    (   p   a   n   e   l   s   w   i   t   h

   H   V   H   R   C   f   u   s   e   s    )

   P   M

   I   A   C   A   F   L   2   1   k   A ,   1   s

   8   D   J   1   0

   S   i   n   g   l   e

   1   7 ,   5

   2   4 ,   0

   2   5 ,   0

   2   0 ,   0

   2   0 ,   0

   2   0 ,   0

   6   3   0

   6   3   0

   6   3   0

   6   3   0

   L   S   C   2   B    (   p   a   n   e   l   s

   w   i   t   h   o   u   t   H   V   H   R   C   f   u   s   e   s    )

   L   S   C   2   A    (   p   a   n   e   l   s   w   i   t   h

   H   V   H   R   C   f   u   s   e   s    )

   P   M

   I   A   C   A   F   L   2   1   k   A ,   1   s

   8   D   J   2   0

   S   i   n   g   l   e

   1   7 ,   5

   2   4 ,   0

   2   5 ,   0

   2   0 ,   0

   2   0 ,   0

   2   0 ,   0

   6   3   0

   6   3   0

   6   3   0

   6   3   0

   E   x   t   e   n   d   a   b   l   e

   L   S   C   2   B    (   p   a   n   e   l   s

   w   i   t   h   o   u   t   H   V   H   R   C   f   u   s   e   s    )

   L   S   C   2   A    (   p   a   n   e   l   s   w   i   t   h

   H   V   H   R   C   f   u   s   e   s    )

   P   M

   I   A   C   A   F   L   R   2   1   k   A ,   1   s

   8   D   H   1   0

   S   i   n   g   l   e

   1   7 ,   5

   2   4 ,   0

   2   5 ,   0

   2   0 ,   0

   2   0 ,   0

   2   0 ,   0

   1   2   5   0

   1   2   5   0

   6   3   0

   6   3   0

   A   i   r  -

   i   n   s   u   l   a   t   e   d

   E   x   t   e   n   d   a   b   l   e

   L   S   C   2   B    (   p   a   n   e   l   s

   w   i   t   h   o   u   t   H   V   H   R   C   f   u   s   e   s    )

   L   S   C   2   A    (   p   a   n   e   l   s   w   i   t   h

   H   V   H   R   C   f   u   s   e   s    )

   P   M

   I   A   C    A    F

   L   R

   2   0

   k   A ,

   1   s

   S   I   M   O   S   E   C

   S   i   n   g   l   e

   1   7 ,   5

   2   4 ,   0

   2   5 ,   0

   2   0 ,   0

   2   0 ,   0

   2   0 ,   0

   1   2   5   0

   1   2   5   0

   1   2   5   0

   1   2   5   0

Page 8: IEC 62271-200 en

8/8/2019 IEC 62271-200 en

http://slidepdf.com/reader/full/iec-62271-200-en 8/8

Siemens AGPower Transmission and DistributionMedium Voltage DivisionMozartstr. 31c91052 ErlangenGermany

www.siemens.com/energy

For questions on power transmission anddistribution, please contact our CustomerSupport Center, 24 hours a day.Tel.: +49 180 / 524 70 00Fax: +49 180 / 524 24 71(Subject to charge: e.g. 12 ct/min)E-mail: [email protected]/energy-support

Subject to change without prior notice

Order no. E50001-U229-A282-X-7600

Printed in Germany

Dispo 30403

GB 06612 101976 08064.

The information in this document contains general descriptions of the technical features, which may not always be available.

An obligation to provide the respective performance feature shall exist only if expressly agreed in the terms of contract.