gupta1972f

3
Tire illathematics Eclucation fI;'-CIION B Vol. VI, No 3, SePt. 1972 ,7f 1't - ? 7 fitIIflPSilSOT ANCIEFiT I}i NIAi.{ }IA1' ;iEIlATICS NO.3 BaucnEralraxi€a's VaExre ()f tz* ayR.C.Gupta, AssistantProfessor,Birltlnrtituteof TechnollgJP.O. l-Iesro,Ranchilndia. ( llccc:r'c<i 2G Ju',c 1972 ) There is a small class of Sanskrit literature calleci Sulbasrrtra ig"<Ta). These Sulba. sttrer, or simply Sulbas, are rnanualsfor the ccnstrttction of vedic altars anr] rnay be tLken to be the oldest geometrical treatises of Indi:r. In them tre get gli'rrples of rn,:rerrt Indian geometry and a few otber subjects of maihematical interest' At present many Sulha manuals are extani. The,\past;rmba ( i,;IT(-;4 ), Baudlidyana (dJqrqa ), Katyeyana ( +rcetel ), and l\4inava Srrlbi,sutras are r.r'ell known" But exact d.rtesof their compositionare not ktrown. That of Blrrdhyiyena is regardedto be the crldest ol tirem and may bc placed betrveea800 B. C. to 4OO n. C. The 6lst aphorism in the first chapter of Baudblyana's treatise glves tbe following rulel. -A cqt'ri EdlA-d c'.ltn-{ agtfaun<ftaa)ia r Pramir.rarh tgtiyena vardhayet-tat-c;r catur[hena-irtrrra-catustridr(onena. 'Increase the measure ( tbat is, the given side of a square ) by its tliird part and again b-y th-r fourth part-* ,. ,*- I V ;,|;;sfiijJi.l, is, of -the fourth part ). ( We gettfe approxiruate valu: cf the diagonal ,'t J ( Baucih. I,6t ). Taking unity to be the side of thr sguare,the above rirle i.nplies {z -l + l+ ^t. - -l= . (l) 3 ' 3.4 3A.i+ Same rule is founcl in the Sulba manuals of Apastau:ba and l{irtyilana2. The approximation (l) giver t/ 2 -5771408= l.tl42l, 5€86 the actual value being gi'renby t/ z =1.41421, 356 G. Tbibaut and B. B. Dattas havc givenrathercomplicated shallgivea simple explrnatioo herea. The linear ioterpolation method or the Rule of ancient India, yields the two term approximation (a2+x)t 12=clxlr2c*l ) aCc( li, /a/h,nr^,1 (4 1/-',, /At;dl la'xf ) (2) (3) derivations of (l). We 'lhree, rvhictr ivas very popular in (4)

Upload: sohil-gupta

Post on 24-May-2015

277 views

Category:

Technology


0 download

TRANSCRIPT

Page 1: Gupta1972f

Tire i l lathematics Eclucat ion f I ; ' -CIION B

Vol. VI , No 3, SePt. 1972 ,7f 1 ' t - ? 7

f i t I I f lPSi lS OT ANCIEFiT I} i NIAi . { } IA1' ; iEI lATICS NO.3BaucnEralraxi€a's VaExre ()f tz*

ayR.C.Gupta, AssistantProfessor,Bir l t lnr t i tuteof Technol lgJP.O. l - Iesro, Ranchi lndia.

( l lccc:r 'c<i 2G Ju' ,c 1972 )

There is a smal l c lass of Sanskr i t l i terature cal leci Sulbasrr t ra ig"<Ta). These Sulba.

st t rer , or s imply Sulbas, are rnanuals for the ccnstr t tct ion of vedic al tars anr] rnay be tLken

to be the oldest geometr ical t reat ises of Indi : r . In them tre get gl i ' r rp les of rn, : rerr t Indian

geometry and a few otber subjects of maihematical interest'

At present many Sulha manuals are extani . The,\past;rmba ( i , ; IT(- ;4 ) , Baudl idyana

(dJqrqa ), Katyeyana ( +rcetel ), and l\4inava Srrlbi,sutras are r.r 'ell known" But exact d.rtes of

their composi t ion are not ktrown. That of Blrrdhyiyena is regarded to be the cr ldest o l t i rem

and may bc placed betrveea 800 B. C. to 4OO n. C.

The 6lst aphorism in the first chapter of Baudblyana's treatise glves tbe following

rulel . -A

cqt'ri EdlA-d c'.ltn-{ agtfaun<ftaa)ia r

Pramir.rarh tgtiyena vardhayet-tat-c;r catur[hena-irtrrra-catustridr(onena. 'Increase the

measure ( tbat is, the given side of a square ) by its t l i ird part and again b-y th-r fourth part-*, . ,* - I

V ;,|;;sfiijJi.l,

is, of -the fourth part ). ( We get tfe approxiruate valu: cf the diagonal ,'t J

( Baucih. I ,6t ) .

Taking uni ty to be the side of thr sguare, the above r i r le i .npl ies

{z - l + l+ ^t . - - l= . ( l )3 ' 3.4 3A. i+

Same rule is founcl in the Sulba manuals of Apastau:ba and l{ i r ty i lana2. The approximation

( l) givert / 2 -5771408= l . t l42l , 5€86

the actual value being gi'ren by

t / z =1.41421, 356

G. Tbibaut and B. B. Dattas havc given rather compl icated

shal l give a simple explrnat ioo herea.

The l inear ioterpolat ion method or the Rule of

ancient India, yields the two term approximation

(a2+x)t 12=clx l r2c* l )

aCc( li, /a/h,nr^,1(4 1/-',, /At ;dl la'xf )

(2)

(3)

derivat ions of ( l ) . We

' lhree, rvhictr ivas very popular in

(4)

Page 2: Gupta1972f

78 The Mathe matics Education

Here ( 2cl l ) is thecl i f ference betwecn the scluares of c an, l tbe next posi t ive integer(c* l ) .I f r is 0 u 'e ge t thc exact square root c and when x is (2cl l ) wc again get the exacr squareroot (6+l) . I lence,for anyotber intermecl iaryvalueof r n 'ctrkexpartsof the f ract ionl l (2c+ I )and add i t to c to get (4). I l lur t rat ing th is argument numerical ly, we have

( i ) / I ={ l?+o)t i r=l+o/(2r- . lz) .=1.

( i i ) rz f : (12+ l ) t l r= I + i /3 as in ( l ) .

( i i i ) . /3 -(1r42;r l r==l- f213 as found in t i re valne of ru 5 etatcd by Dattas.Last ly ( iv) 1/ ty -=(t?+ r) t /n=l +3/3-2.

Simi lar ser ies of values can be given betrvcen any t ,ao succest ive square numbers.

Thus v;e shal l ha, ;e

{7 -( .22 +3)r / ' -2+31 .3 ' - 22)=13, ' . - r .

I t may bc pointed out that the approximat\on (1) is not found among the ancient

Greekso. By above argument v.'e shali also have, similarly,

(a3*x t ' l t = a + x l (3az* 3a * l )

which rras given by S. Stcvin (about 1590 A' D')?

Once we get the two term approximat ion, the four term approximat ion ( l ) may be

found by thc process o[ successive cor rection as already explained by Gurjars. For inetancc

lfle aSsurle

\ / - , I + ( l /3){e (5)

Squaring both s ides and neglect ing e2 we easi ly get r to be equal to l /12 which, wh en,

put in (5), g ives the thi rd term of ( l ) '

If we now apply the process once more v;e shall get the required approximation. It

may be pointed out that lhe process given by Neugebauero for arriving at Euccestive terms is

mathematical ly ec1' . r ivaleut to the above process of repeated correct ions. For, let a be aay

approxinration to the squarc root of "lf, t lren the next approxirnation by tbe abcve process,

af ter assrrrning

\ 'Jr \ f =a+

"wil l be

t/ {:o * (ff- oz)12u,

which can be wri t ten as

{N:{o*(Nla)t12and tl i is explains as to why the approxirnation (6) is the average of the given approximation aand ("M/a).

Before c losing this art ic le, i t may be pointed out that the Babylonians also gave a

very good value for y ' [ which may be wri t ten asro

\ /2-t +T +!I-+ 19.' ^ '60'602'6ot

(6)

Page 3: Gupta1972f

R. C. Gupta

t / z ' :gos+U 2i6oo:1.41421, 29tThe Indian value, in addi t ion to being expressed in a qui le di f ferent menner, is less

accurate than the Babylonian value. Evcn their f irst fractional terms do noi agree. More-over, there is no negat ive term in the Babylonian value. Also the Indian value is in ex, :ess,and the Babyltnian value in defect, of the aciual value.

R.eferences

l. Bauclhd.yana's Sulbashtram ed. by S. Prakash and R. S. Sbarma, I ' {ew Delhi , 1968, p.61.

2. See Apastamba Sulbasttra ed. by D. Srinivasachar andS. Narasimhach:r, N{ysore, 1931,p.26 and Kir tyayana Sulbasutram ed. by Vidyadhar Sharma, I{ashi, 1928, p. I7.

3. Datta, B. B. : The Science of the Sulba. Calcul ta, 1932, pp. 189-194.

4. Gupta, R. C, : "Some Importaut Indian Mathematical Methods as Conccivcd in Sanskri tLanguage." An invi ted paper presentcd at the fnternat ional Saaskri t Conference, NewDe lhi, Irdarch 1972, pp, 7-8,

5. Datta, B. 8, , op. c i t , , p. I95.

6. Smith, D. E. : History of l r {athematics. New York, lg58, Vol. I I , p. 254.

7. Smith, D. E., op. c i t . , p. 255.

B. Gurjar, L. V. : Ancient Indian i \ {arhematics and Vedha. Poona, lgi t7, p. 39,9. Neugebauer,0. : The Exact Sciences in Ant iqui ty. I . {erv York, 1962, p.50.

10. Neugebauer, 0. : op. c i t . , p. 35.

79

Slvrng

-\r