misha bilenko @ microsoft

of 39 /39
http://azure.com/ml

Author: papisio

Post on 15-Jul-2015

255 views

Category:

Data & Analytics


0 download

Embed Size (px)

TRANSCRIPT

  • http://azure.com/ml

  • --

    -

    -

  • >>//[Aeoriuapakfajoerauiepraup]//[Aeoriuapakfajoerauiepraup]
  • >>//[Aeoriuapakfajoerauiepraup]//[Aeoriuapakfajoerauiepraup]//[Aeoriuapakfajoerauiepraup]//[Aeoriuapakfajoerauiepraup]
  • >>//[Aeoriuapakfajoerauiepraup]//[Aeoriuapakfajoerauiepraup]
  • >>//[Aeoriuapakfajoerauiepraup]//[Aeoriuapakfajoerauiepraup]
  • >>//[Aeoriuapakfajoerauiepraup]//[Aeoriuapakfajoerauiepraup]
  • Mark Ready for Production

    Ready

    For Production

    Sent to

    Deploy

    Published

    To Marketplace

  • >>//[Aeoriuapakfajoerauiepraup]//[Aeoriuapakfajoerauiepraup]
  • Save

    // Call the Marketplace api to get the Frequently Bought Together products for this product

    var prediction = GetJsonObject ("https://api.datamarket.azure.com/ data.ashx/ama/mba-preview/v1/GetItemSetForItem?key='demo'&item='" + Model.Id + "'","AccountKey", "Q6pX0DpKFsoFSgbxstlgzo1wtmCMQhr0Kf4rky MuTVQ");

    // Get the product information from the Databasevar boughtTogether = (prediction != null) ? GetProducts((object[]) prediction.ItemSet) : new List();

    }

    @Html.Partial("FrequentlyBoughtTogether", boughtTogether)

  • >>//[Aeoriuapakfajoerauiepraup]//[Aeoriuapakfajoerauiepraup]
  • -- Product: Introducing Azure ML

    -

    -

  • http://azure.com/ml

  • Develop Model Deploy Model

  • Classification Regression Recommenders Clustering

    State of art ML Algorithms

  • Dataset 1, called as:

    maml.mapInputPort(1)

    Dataset 2, called as:

    maml.mapInputPort(2)

    Contents of optional Zip port are in ./src/, called as:

    source("src/yourfile.R");load("src/yourData.rdata");

    Output data.frame, called as:

    maml.mapOutputPort

    R Device output standard output and graphics

  • Get/Prepare Data

    Build/Edit Experiment

    Create/Update Model

    Evaluate Model Results

    Publish Web

    Service

    Build ML Model Deploy as Web ServiceProvision Workspace

    Get Azure

    Subscription

    Create

    Workspace

    Publish an App

    Azure Data

    Marketplace

  • --

    - Backend: Many-{task,algo,platform} ML toolbox

    -

  • --

    -

    -

    -

    -

  • --

    -

    -

    -public interface IPredictor

    public interface ITrainer

    where TPredictor : IPredictor

  • --

    -

    -

    --

    -

    -

  • --

    -

    - Language: Net# for Deep Neural Net Topologies

  • --

    -

    -

    -

    -

    -

    -

  • Convolutional

    1 hidden layer, fully-connected

    Input: 28x28

    Hidden: 50

    Output:

    10

    2 hidden layers, fully-connected

    Input: 28x28

    Hidden: 100

    Output: 10

    Hidden: 200

    28

    28

    5

    5

    Conv1

    Image

    24

    24

    2

    2

    Pool112

    12

    8Conv28

    22

    Pool24

    4

    5

    5

    32

    Hidden: 120

    Output: 10

    32

  • input Image [28, 28];

    hidden H1 [200] from Image all;

    hidden H2 [100] from H1 all;

    output Output [10] softmax from H2 all;

    Image: 28x28

    H1: 200

    H2: 100

    Output: 10

  • const {kernelSize1 = 5; mapCount1 = 5}

    input Image [28, 28];

    hidden Conv1 [mapCount1,24,24] from Image convolve {KernelShape = [kernelSize1, kernelSize1]; MapCount = mapCount1; InputShape = [28, 28];

    };

    hidden Pool1 [5, 12, 12] from Conv1 max pool {KernelShape = [1, 2, 2]; Stride = [1, 2, 2]; InputShape = [mapCount1, 24, 24];

    };

    ...

    hidden Hidden [120] from Pool2 all;

    output Output [10] softmax from H2 all;

    28

    28

    5

    5

    Conv1

    Image

    24

    242 2

    Pool11212

    8

    Conv28

    2

    2

    Pool24

    4

    5

    5

    32

    Hidden: 120

    Output: 10

    32

  • Azure ML Net#

  • --

    - Backend: Many-{task,algo,platform} ML toolbox

    -

  • - http://azure.com/ml

    -

    -

    http://aka.ms/azuremlawards [email protected]