ee141-spring 2004 digital integrated...

17
EE141 1 EE141 1 EECS141-S04 EE141 EE141- Spring 2004 Spring 2004 Digital Integrated Digital Integrated Circuits Circuits Lecture 17 Lecture 17 PTL PTL Dynamic Logic Dynamic Logic EE141 2 EECS141-S04 Administrative Stuff Administrative Stuff No Lab this week Hw 6 posted – Due April 1 Project due Fr by 5:30pm Electronic reports only! Send report (using template from web-site) to [email protected] Do NOT forget to include your SPICE file Will be out of town on Th. Lecture by Prof. Vladimirescu on adders

Upload: others

Post on 24-Mar-2020

33 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EE141-Spring 2004 Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/.../ic541ca_f04/Lectures/Lecture17-dynamic.pdf · EE141 1 EE141 1 EECS141-S04 EE141-Spring 2004 Digital Integrated

EE141

1

EE1411

EECS141-S04

EE141EE141--Spring 2004Spring 2004Digital Integrated Digital Integrated CircuitsCircuits

Lecture 17Lecture 17

PTLPTLDynamic LogicDynamic Logic

EE1412

EECS141-S04

Administrative StuffAdministrative StuffNo Lab this weekHw 6 posted – Due April 1Project due Fr by 5:30pm

Electronic reports only!Send report (using template from web-site) to [email protected] NOT forget to include your SPICE file

Will be out of town on Th. Lecture by Prof. Vladimirescu on adders

Page 2: EE141-Spring 2004 Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/.../ic541ca_f04/Lectures/Lecture17-dynamic.pdf · EE141 1 EE141 1 EECS141-S04 EE141-Spring 2004 Digital Integrated

EE141

2

EE1413

EECS141-S04

ScheduleSchedule

Last lecture: project intro, PTLToday:

Dynamic Logic

EE1414

EECS141-S04

PassPass--TransistorTransistorLogicLogic

Page 3: EE141-Spring 2004 Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/.../ic541ca_f04/Lectures/Lecture17-dynamic.pdf · EE141 1 EE141 1 EECS141-S04 EE141-Spring 2004 Digital Integrated

EE141

3

EE1415

EECS141-S04

PassPass--Transistor LogicTransistor Logic

Inpu

ts

Switch

Network

OutOut

A

B

B

B

• N transistors

• No static consumption

EE1416

EECS141-S04

NMOS Only Logic: NMOS Only Logic: Level Restoring TransistorLevel Restoring Transistor

M2

M1

Mn

Mr

OutA

B

VDDVDDLevel Restorer

X

• Advantage: Full Swing

• Restorer adds capacitance, takes away pull down current at X

• Ratio problem

Page 4: EE141-Spring 2004 Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/.../ic541ca_f04/Lectures/Lecture17-dynamic.pdf · EE141 1 EE141 1 EECS141-S04 EE141-Spring 2004 Digital Integrated

EE141

4

EE1417

EECS141-S04

Restorer SizingRestorer Sizing

0 100 200 300 400 5000.0

1.0

2.0

W/Lr =1.0/0.25 W/Lr =1.25/0.25

W/Lr =1.50/0.25

W/Lr =1.75/0.25

Vol

tage

[V]

Time [ps]

3.0•Upper limit on restorer size•Pass-transistor pull-downcan have several transistors in stack

EE1418

EECS141-S04

Solution 2: Single Transistor Pass Gate with Solution 2: Single Transistor Pass Gate with VVTT=0=0

Out

VDD

VDD

2.5V

VDD

0V 2.5V

0V

WATCH OUT FOR LEAKAGE CURRENTS

Page 5: EE141-Spring 2004 Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/.../ic541ca_f04/Lectures/Lecture17-dynamic.pdf · EE141 1 EE141 1 EECS141-S04 EE141-Spring 2004 Digital Integrated

EE141

5

EE1419

EECS141-S04

Complementary Pass Transistor LogicComplementary Pass Transistor Logic

A

B

A

B

B B B B

A

B

A

B

F=AB

F=AB

F=A+B

F=A+B

B B

A

A

A

A

F=A⊕ΒÝ

F=A⊕ΒÝ

OR/NOR EXOR/NEXORAND/NAND

F

F

Pass-Transistor

Network

Pass-TransistorNetwork

AABB

AABB

Inverse

(a)

(b)

EE14110

EECS141-S04

Solution 3: Transmission GateSolution 3: Transmission Gate

A B

C

C

A B

C

C

B

CL

C = 0 V

A = 2.5 V

C = 2.5 V

Page 6: EE141-Spring 2004 Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/.../ic541ca_f04/Lectures/Lecture17-dynamic.pdf · EE141 1 EE141 1 EECS141-S04 EE141-Spring 2004 Digital Integrated

EE141

6

EE14111

EECS141-S04

Resistance of Transmission GateResistance of Transmission Gate

Vout

0 V

2.5 V

2.5 VR

n

Rp

0.0 1.0 2.00

10

20

30

Vout, V

Res

ista

nce

, oh

ms

Rn

Rp

Rn || Rp

EE14112

EECS141-S04

Delay in Transmission Gate NetworksDelay in Transmission Gate Networks

V1 Vi-1

C

2.5 2.5

0 0

Vi Vi+1

CC

2.5

0

Vn-1 Vn

CC

2.5

0

In

V1 Vi Vi+1

C

Vn-1 Vn

CC

In

ReqReq Req Req

CC

(a)

(b)

C

Req Req

C C

Req

C C

Req Req

C C

Req

C

In

m

(c)

Page 7: EE141-Spring 2004 Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/.../ic541ca_f04/Lectures/Lecture17-dynamic.pdf · EE141 1 EE141 1 EECS141-S04 EE141-Spring 2004 Digital Integrated

EE141

7

EE14113

EECS141-S04

Delay OptimizationDelay Optimization

EE14114

EECS141-S04

Transmission Gate Full AdderTransmission Gate Full Adder

A

B

P

Ci

VDDA

A A

VDD

Ci

A

P

AB

VDD

VDD

Ci

Ci

Co

S

Ci

P

P

P

P

P

Sum Generation

Carry Generation

Setup

Similar delays for sum and carry

Page 8: EE141-Spring 2004 Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/.../ic541ca_f04/Lectures/Lecture17-dynamic.pdf · EE141 1 EE141 1 EECS141-S04 EE141-Spring 2004 Digital Integrated

EE141

8

EE14115

EECS141-S04

Dynamic LogicDynamic Logic

EE14116

EECS141-S04

Dynamic CMOSDynamic CMOS

In static circuits at every point in time (except when switching) the output is connected to either GND or VDD via a low resistance path.

fan-in of n requires 2n (n N-type + n P-type) devices

Dynamic circuits rely on the temporary storage of signal values on the capacitance of high impedance nodes.

requires on n + 2 (n+1 N-type + 1 P-type) transistors

Page 9: EE141-Spring 2004 Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/.../ic541ca_f04/Lectures/Lecture17-dynamic.pdf · EE141 1 EE141 1 EECS141-S04 EE141-Spring 2004 Digital Integrated

EE141

9

EE14117

EECS141-S04

Dynamic GateDynamic Gate

In1

In2 PDN

In3

Me

Mp

Clk

Clk

Out

CL

Out

Clk

Clk

A

BC

Mp

Me

Two phase operationPrecharge (CLK = 0)Evaluate (CLK = 1)

EE14118

EECS141-S04

Dynamic GateDynamic Gate

In1

In2 PDN

In3

Me

Mp

Clk

Clk

Out

CL

Out

Clk

Clk

A

BC

Mp

Me

Two phase operationPrecharge (Clk = 0)Evaluate (Clk = 1)

on

off

1

off

on

((AB)+C)

Page 10: EE141-Spring 2004 Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/.../ic541ca_f04/Lectures/Lecture17-dynamic.pdf · EE141 1 EE141 1 EECS141-S04 EE141-Spring 2004 Digital Integrated

EE141

10

EE14119

EECS141-S04

Conditions on OutputConditions on Output

Once the output of a dynamic gate is discharged, it cannot be charged again until the next precharge operation.Inputs to the gate can make at most one transition during evaluation.

Output can be in the high impedance state during and after evaluation (PDN off), state is stored on CL

EE14120

EECS141-S04

Properties of Dynamic GatesProperties of Dynamic GatesLogic function is implemented by the PDN only

number of transistors is N + 2 (versus 2N for static complementary CMOS)

Full swing outputs (VOL = GND and VOH = VDD)Non-ratioed - sizing of the devices does not affect the logic levelsFaster switching speeds

reduced load capacitance due to lower input capacitance (Cin)

reduced load capacitance due to smaller output loading (Cout)

no Isc, so all the current provided by PDN goes into discharging CL

Page 11: EE141-Spring 2004 Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/.../ic541ca_f04/Lectures/Lecture17-dynamic.pdf · EE141 1 EE141 1 EECS141-S04 EE141-Spring 2004 Digital Integrated

EE141

11

EE14121

EECS141-S04

Properties of Dynamic GatesProperties of Dynamic Gates

Overall power dissipation usually higher than static CMOS

no static current path ever exists between VDD and GND (including Psc)no glitchinghigher transition probabilitiesextra load on Clk

PDN starts to work as soon as the input signals exceed VTn, so VM, VIH and VIL equal to VTn

low noise margin (NML)

Needs a precharge/evaluate clock

EE14122

EECS141-S04

Issues in Dynamic Design 1: Issues in Dynamic Design 1: Charge LeakageCharge Leakage

CL

Clk

Clk

Out

A

Mp

Me

Leakage sources

CLK

VOut

Precharge

Evaluate

Dominant component is subthreshold current

Page 12: EE141-Spring 2004 Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/.../ic541ca_f04/Lectures/Lecture17-dynamic.pdf · EE141 1 EE141 1 EECS141-S04 EE141-Spring 2004 Digital Integrated

EE141

12

EE14123

EECS141-S04

Solution to Charge LeakageSolution to Charge Leakage

CL

Clk

Clk

Me

Mp

A

B

Out

Mkp

Same approach as level restorer for pass-transistor logic

Keeper

EE14124

EECS141-S04

Issues in Dynamic Design 2: Issues in Dynamic Design 2: Charge SharingCharge Sharing

CL

Clk

Clk

CA

CB

B=0

A

OutMp

Me

Charge stored originally on CL is redistributed (shared) over CL and CA leading to reduced robustness

Page 13: EE141-Spring 2004 Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/.../ic541ca_f04/Lectures/Lecture17-dynamic.pdf · EE141 1 EE141 1 EECS141-S04 EE141-Spring 2004 Digital Integrated

EE141

13

EE14125

EECS141-S04

Charge Sharing ExampleCharge Sharing Example

CL=50fF

Clk

Clk

A A

B B B !B

CC

Out

Ca=15fF

Cc=15fF

Cb=15fF

Cd=10fF

EE14126

EECS141-S04

Charge SharingCharge Sharing

CLVDD CLVout t( ) Ca VDD VTn VX( )–( )+=

or

∆Vout Vout t( ) VDD–CaCL-------- VDD VTn VX( )–( )–= =

∆Vout VDD

CaCa CL+----------------------⎝ ⎠⎜ ⎟⎛ ⎞

–=

case 1) if ∆Vout < VTn

case 2) if ∆Vout > VTnB = 0

Clk

X

CL

Ca

Cb

A

Out

Mp

Ma

VDD

Mb

Clk Me

Page 14: EE141-Spring 2004 Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/.../ic541ca_f04/Lectures/Lecture17-dynamic.pdf · EE141 1 EE141 1 EECS141-S04 EE141-Spring 2004 Digital Integrated

EE141

14

EE14127

EECS141-S04

Solution to Charge RedistributionSolution to Charge Redistribution

Clk

Clk

Me

Mp

A

B

OutMkp

Clk

Precharge internal nodes using a clock-driven transistor (at the cost of increased area and power)

EE14128

EECS141-S04

Issues in Dynamic Design 3: Issues in Dynamic Design 3: BackgateBackgate CouplingCoupling

CL1

Clk

Clk

B=0

A=0

Out1Mp

Me

Out2

CL2In

Dynamic NAND Static NAND

=1=0

Page 15: EE141-Spring 2004 Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/.../ic541ca_f04/Lectures/Lecture17-dynamic.pdf · EE141 1 EE141 1 EECS141-S04 EE141-Spring 2004 Digital Integrated

EE141

15

EE14129

EECS141-S04

BackgateBackgate Coupling EffectCoupling Effect

-1

0

1

2

3

0 2 4 6

Vol

tage

Time, ns

Clk

In

Out1

Out2

EE14130

EECS141-S04

Issues in Dynamic Design 4: Clock Issues in Dynamic Design 4: Clock FeedthroughFeedthrough

CL

Clk

Clk

B

A

OutMp

Me

Coupling between Out and Clk input of the prechargedevice due to the gate to drain capacitance. So voltage of Out can rise above VDD. The fast rising (and falling edges) of the clock couple to Out.

Page 16: EE141-Spring 2004 Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/.../ic541ca_f04/Lectures/Lecture17-dynamic.pdf · EE141 1 EE141 1 EECS141-S04 EE141-Spring 2004 Digital Integrated

EE141

16

EE14131

EECS141-S04

Clock Clock FeedthroughFeedthrough

-0.5

0.5

1.5

2.5

0 0.5 1

Clk

Clk

In1

In2

In3

In4

Out

In &Clk

Out

Time, ns

Vol

tage

Clock feedthrough

Clock feedthrough

EE14132

EECS141-S04

Other EffectsOther Effects

Capacitive couplingSubstrate couplingMinority charge injectionSupply noise (ground bounce)

Page 17: EE141-Spring 2004 Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/.../ic541ca_f04/Lectures/Lecture17-dynamic.pdf · EE141 1 EE141 1 EECS141-S04 EE141-Spring 2004 Digital Integrated

EE141

17

EE14133

EECS141-S04

Next LectureNext Lecture

Arithmetic circuits and adders