introduction to digital integrated...

20
EE141 1 EE141 1 Tu-Th 11am-12:30pm 203 McLaughlin EE141- Spring 2004 Introduction to Digital Integrated Circuits EE141 2 What is this class about? Introduction to digital integrated circuits. » CMOS devices and manufacturing technology. CMOS inverters and gates. Propagation delay, noise margins, and power dissipation. Sequential circuits. Arithmetic, interconnect, and memories. Programmable logic arrays. Design methodologies. What will you learn? » Understanding, designing, and optimizing digital circuits with respect to different quality metrics: cost, speed, power dissipation, and reliability

Upload: others

Post on 06-Oct-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/... · 2006. 12. 19. · EE141 2 EE141 3 Digital Integrated Circuits zIntroduction:

EE141

1

EE1411

Tu-Th 11am-12:30pm203 McLaughlin

EE141- Spring 2004Introduction to Digital

Integrated Circuits

EE1412

What is this class about?

Introduction to digital integrated circuits.» CMOS devices and manufacturing technology.

CMOS inverters and gates. Propagation delay, noise margins, and power dissipation. Sequential circuits. Arithmetic, interconnect, and memories. Programmable logic arrays. Design methodologies.

What will you learn?» Understanding, designing, and optimizing digital

circuits with respect to different quality metrics: cost, speed, power dissipation, and reliability

Page 2: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/... · 2006. 12. 19. · EE141 2 EE141 3 Digital Integrated Circuits zIntroduction:

EE141

2

EE1413

Digital Integrated Circuits

Introduction: Issues in digital designThe CMOS inverterCombinational logic structuresSequential logic gates; timingArithmetic building blocksInterconnect: R, L and CMemories and array structuresDesign methods

EE1414

Interludium: Administrativia

Instructor

Jan M. [email protected] hours: 511 Cory

Tu 1-3pm

Brian LeibowitzDiscussion + [email protected] Hours: TBD

Gang ZhouDiscussion + [email protected] Hours: TBD

The TAs

Reader: TBA

Page 3: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/... · 2006. 12. 19. · EE141 2 EE141 3 Digital Integrated Circuits zIntroduction:

EE141

3

EE1415

The Web-Site

Class and lecture notesAssignments and solutionsLab and project informationExamsMany other goodies …

The sole source of informationhttp://bwrc.eecs.berkeley.edu/Classes/ee141

Save a tree!

EE1416

Class Admission

No enrollment issues. Everyone will be accommodated! » Class is videotaped» Also webcasted

(http://webcast.berkeley.edu)Make sure your name is on the class roll!

Page 4: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/... · 2006. 12. 19. · EE141 2 EE141 3 Digital Integrated Circuits zIntroduction:

EE141

4

EE1417

Discussions and Labs

Discussion sessions» Mo 4-5pm, 433 Latimer» We 2-3pm, 203 McLaughlin » Pick any of the two (the are covering the same

material)

Labs (353 Cory)» Mo 9-12am» We 11am-2pm» Th 12:30-3:30pm» Pick the one that fits you the best (pending

availability) and STICK TO IT!

EE141 8

TAmtng

M

T

W

R

F

8 9 10 11 12 1 2 3 4 5 6

Lab(Brian)353 Cory

Lab(Brian/Gang)

353 Cory

Lab(Gang)353 Cory

OH(Jan)

511 Cory

DISC*(Gang)

203 McLaughlin

DISC*(Brian)

433 Latimer

Lec(Jan)

203 McLaughlin

ProblemSets Due

Lec(Jan)

203 McLaughlin

* Discussion sections will cover identical material

Your EE141 Week At a Glance

Page 5: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/... · 2006. 12. 19. · EE141 2 EE141 3 Digital Integrated Circuits zIntroduction:

EE141

5

EE1419

Class Organization

10 AssignmentsA couple of design projects (1 term project)Labs: 6 software, 1 hardware2 midterms, 1 final» Midterm 1: Th February 26, 6:30-8:00pm » Midterm 2: Th April 8, 6:30-8:00pm» Final: We May 19, 8-11am

EE14110

Grading Policy

Homeworks: 10%Labs: 10%Projects: 20%Midterms: 30%Final: 30%

Page 6: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/... · 2006. 12. 19. · EE141 2 EE141 3 Digital Integrated Circuits zIntroduction:

EE141

6

EE14111

Class Material

Textbook: “Digital Integrated Circuits – A Design Perspective,” 2nd Edition, by J. Rabaey, A. Chandrakasan, and B. NikolicLab Reader:Available on the web page!Selected material will be made available from Copy

Central

Check web page for the availability of tools

EE14112

Software

Cadence software only!» Phased out the Micromagic software.» Online documentation and tutorials

HSPICE and IRSIM for simulation

Page 7: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/... · 2006. 12. 19. · EE141 2 EE141 3 Digital Integrated Circuits zIntroduction:

EE141

7

EE14113

Getting Started

Make-up for lecture 1: Mo Jan 26, 4pm (usual room)Assignment 1: Getting SPICE to work –see web-pageNO discussion sessions or labs this week.First discussion sessions in Week 2First Software Lab in Week 3

EE14114

Introduction

Why is designing digital ICs different today than it was before?Will it change in future?

Page 8: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/... · 2006. 12. 19. · EE141 2 EE141 3 Digital Integrated Circuits zIntroduction:

EE141

8

EE14115

The First Computer

The BabbageDifference Engine(1832)

25,000 partscost: £17,470

EE14116

ENIAC - The first electronic computer (1946)

Page 9: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/... · 2006. 12. 19. · EE141 2 EE141 3 Digital Integrated Circuits zIntroduction:

EE141

9

EE14117

The Transistor Revolution

First transistorBell Labs, 1948

EE14118

The First Integrated Circuits

Bipolar logic1960’s

ECL 3-input GateMotorola 1966

Page 10: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/... · 2006. 12. 19. · EE141 2 EE141 3 Digital Integrated Circuits zIntroduction:

EE141

10

EE14119

Intel 4004 Micro-Processor

EE14120

Evolution in Transistor Count

Page 11: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/... · 2006. 12. 19. · EE141 2 EE141 3 Digital Integrated Circuits zIntroduction:

EE141

11

EE14121

Intel Pentium (II) microprocessor

EE14122

Moore’s Law

In 1965, Gordon Moore noted that the number of transistors on a chip doubled every 18 to 24 months.

He made a prediction that semiconductor technology will double its effectiveness every 18 months

Page 12: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/... · 2006. 12. 19. · EE141 2 EE141 3 Digital Integrated Circuits zIntroduction:

EE141

12

EE14123

Moore’s Law

16151413121110

9876543210

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

LO

G2

OF

TH

E N

UM

BE

R O

FC

OM

PO

NE

NT

S P

ER

INT

EG

RA

TE

D F

UN

CT

ION

Electronics, April 19, 1965.

EE14124

Evolution in Complexity

Page 13: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/... · 2006. 12. 19. · EE141 2 EE141 3 Digital Integrated Circuits zIntroduction:

EE141

13

EE14125

Moore’s law in Microprocessors

40048008

80808085 8086

286386

486Pentium® proc

P6

0.001

0.01

0.1

1

10

100

1000

1970 1980 1990 2000 2010Year

Tra

nsi

sto

rs (

MT

)

2X growth in 1.96 years!

Transistors on Lead Microprocessors double every 2 yearsTransistors on Lead Microprocessors double every 2 yearsS. Borkar

EE14126

Moore’s Law - Logic Density

Shrinks and compactions meet density goalsNew micro-architectures drop density

Shrinks and compactions meet density goalsNew micro-architectures drop density

So

urc

e: In

telPentium (R)

Pentium Pro (R) 486

386

i860

1

10

100

1000

1.5µ

1.0µ

0.8µ

0.6µ

0.35

µ

0.25

µ

0.18

µ

0.13

µ

Lo

gic

Den

sity

2x trend

Lo

gic

Tra

nsi

sto

rs/m

m2

Pentium II (R)

Page 14: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/... · 2006. 12. 19. · EE141 2 EE141 3 Digital Integrated Circuits zIntroduction:

EE141

14

EE14127

Die Size Growth

40048008

80808085

8086286

386486Pentium ® proc

P6

1

10

100

1970 1980 1990 2000 2010Year

Die

siz

e (m

m)

~7% growth per year~2X growth in 10 years

Die size grows by 14% to satisfy Moore’s LawDie size grows by 14% to satisfy Moore’s Law

S. Borkar

EE14128

Frequency

P6Pentium ® proc

48638628680868085

8080800840040.1

1

10

100

1000

10000

1970 1980 1990 2000 2010Year

Fre

qu

ency

(M

hz)

Lead Microprocessors frequency doubles every 2 yearsLead Microprocessors frequency doubles every 2 years

Doubles every2 years

S. Borkar

Page 15: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/... · 2006. 12. 19. · EE141 2 EE141 3 Digital Integrated Circuits zIntroduction:

EE141

15

EE14129

Processor Frequency Trend

386486

Pentium(R)

Pentium Pro(R)

Pentium(R) II

MPC750604+604

601, 603

21264S

2126421164A

2116421064A

21066

10

100

1,000

10,000

1987

1989

1991

1993

1995

1997

1999

2001

2003

2005

Mh

z

1

10

100

Gat

e D

elay

s/ C

lock

Intel

IBM Power PC

DEC

Gate delays/clock

Processor freq scales by 2X per

generation

Frequency doubles each generationNumber of gates/clock reduce by 25%

V.De, S. BorkarISLPED’99

EE14130

Power

P6Pentium ® proc

486

3862868086

80858080

80084004

0.1

1

10

100

1971 1974 1978 1985 1992 2000Year

Po

wer

(W

atts

)

Lead Microprocessors power continues to increaseLead Microprocessors power continues to increase

S. Borkar

Page 16: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/... · 2006. 12. 19. · EE141 2 EE141 3 Digital Integrated Circuits zIntroduction:

EE141

16

EE14131

Processor Power

386386

486 486

Pentium(R)Pentium(R)

MMX

Pentium Pro (R)

Pentium II (R)

1

10

100

1.5µ 1µ 0.8µ 0.6µ 0.35µ 0.25µ 0.18µ 0.13µ

Max

Po

wer

(W

atts

) ?

Lead processor power increases every generation

Compactions provide higher performance at lower power

So

urc

e: In

tel

EE14132

Power will be a problem

5KW 18KW

1.5KW 500W

40048008

80808085

8086286

386486

Pentium® proc

0.1

1

10

100

1000

10000

100000

1971 1974 1978 1985 1992 2000 2004 2008Year

Po

wer

(W

atts

)

Power delivery and dissipation will be prohibitivePower delivery and dissipation will be prohibitive

S. Borkar

Page 17: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/... · 2006. 12. 19. · EE141 2 EE141 3 Digital Integrated Circuits zIntroduction:

EE141

17

EE14133

Power density will increase

400480088080

8085

8086

286 386486

Pentium® procP6

1

10

100

1000

10000

1970 1980 1990 2000 2010Year

Po

wer

Den

sity

(W

/cm

2)

Hot Plate

NuclearReactor

RocketNozzle

Power density too high to keep junctions at low tempPower density too high to keep junctions at low temp

S. Borkar

EE14134

Power delivery challenges

P6Pentium® proc

486386286

8086

80858080

800840040.01

0.10

1.00

10.00

100.00

1,000.00

1970 1980 1990 2000 2010Year

Icc

(am

p)

P6Pentium® proc

486386

286

8086

80858080

80084004

1.E-041.E-031.E-021.E-011.E+001.E+011.E+021.E+031.E+041.E+051.E+061.E+07

1970 1980 1990 2000 2010Year

L(d

i/dt)

/Vd

d

High supply currents at low voltage:Challenges: IR drop and L(di/dt) noiseHigh supply currents at low voltage:

Challenges: IR drop and L(di/dt) noise

S. Borkar

Page 18: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/... · 2006. 12. 19. · EE141 2 EE141 3 Digital Integrated Circuits zIntroduction:

EE141

18

EE14135

Not Only Microprocessors

Digital Cellular Market(Phones Shipped)

1996 1997 1998 1999 2000

Units 48M 86M 162M 260M 435M Analog Baseband

Digital Baseband

(DSP + MCU)

PowerManagement

Small Signal RF

PowerRF

(data from Texas Instruments)(data from Texas Instruments)

CellPhone

EE14136

Productivity Trends

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

2003

1981

1983

1985

1987

1989

1991

1993

1995

1997

1999

2001

2005

2007

2009

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

Logic Tr./ChipTr./Staff Month.

xxx

xxx

x

21%/Yr. compoundProductivity growth rate

x

58%/Yr. compoundedComplexity growth rate

10,000

1,000

100

10

1

0.1

0.01

0.001

Lo

gic

Tra

nsi

sto

r p

er C

hip

(M)

0.01

0.1

1

10

100

1,000

10,000

100,000

Pro

du

ctiv

ity

(K)

Tra

ns.

/Sta

ff -

Mo

.

Source: Sematech

Complexity outpaces design productivity

Co

mp

lexi

ty

Page 19: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/... · 2006. 12. 19. · EE141 2 EE141 3 Digital Integrated Circuits zIntroduction:

EE141

19

EE14137

Challenges in Digital Design

“Microscopic Problems”• Ultra-high speed design• Interconnect• Noise, Crosstalk• Reliability, Manufacturability• Power Dissipation• Clock distribution.

Everything Looks a Little Different

“Macroscopic Issues”• Time-to-Market• Millions of Gates• High-Level Abstractions• Reuse & IP: Portability• Predictability• etc.

…and There’s a Lot of Them!

∝ DSM ∝ 1/DSM

?

EE14138

Design Abstraction Levels

n+n+S

GD

+

DEVICE

CIRCUIT

GATE

MODULE

SYSTEM

Page 20: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/... · 2006. 12. 19. · EE141 2 EE141 3 Digital Integrated Circuits zIntroduction:

EE141

20

EE14139

Why Scaling?

Technology shrinks by 0.7/generationWith every generation can integrate 2x more functions per chip; chip cost does not increase significantlyCost of a function decreases by 2xHow to design chips with more and more functions?Design engineering population does not double every two years…Need to understand different levels of abstraction

EE14140

Next Class

Introduces basic metrics for design of integrated circuits – how to measure delay, power, etc.Brief intro to IC manufacturing and design