introduction to digital integrated...

21
EE141 1 EE141 1 Tu-Th 2:00-3:30pm 203 McLaughlin EE141- Spring 2002 Introduction to Digital Integrated Circuits EE141 2 What is this class about? l Introduction to digital integrated circuits. » CMOS devices and manufacturing technology. CMOS inverters and gates. Propagation delay, noise margins, and power dissipation. Sequential circuits. Arithmetic, interconnect, and memories. Programmable logic arrays. Design methodologies. l What will you learn? » Understanding, designing, and optimizing digital circuits with respect to different quality metrics: cost, speed, power dissipation, and reliability

Upload: hadieu

Post on 26-Mar-2018

264 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/... · EE141 1 EE141 1 Tu-Th 2:00-3:30pm 203 McLaughlin EE141- Spring 2002 Introduction

EE141

1

EE1411

Tu-Th 2:00-3:30pm203 McLaughlin

EE141- Spring 2002Introduction to Digital

Integrated Circuits

EE1412

What is this class about?

l Introduction to digital integrated circuits.» CMOS devices and manufacturing technology.

CMOS inverters and gates. Propagation delay, noise margins, and power dissipation. Sequential circuits. Arithmetic, interconnect, and memories. Programmable logic arrays. Design methodologies.

l What will you learn?» Understanding, designing, and optimizing digital

circuits with respect to different quality metrics: cost, speed, power dissipation, and reliability

Page 2: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/... · EE141 1 EE141 1 Tu-Th 2:00-3:30pm 203 McLaughlin EE141- Spring 2002 Introduction

EE141

2

EE1413

Digital Integrated Circuits

l Introduction: Issues in digital designl The CMOS inverterl Combinational logic structuresl Sequential logic gates; timingl Arithmetic building blocksl Interconnect: R, L and Cl Memories and array structuresl Design methods

EE1414

Interludium: Administrativia

Instructors

Jan M. [email protected] hours: 231 Cory

Mo 4:00-5:30pmTu 1-2pm

Andrei [email protected] hours: 511 Cory

TBD

Page 3: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/... · EE141 1 EE141 1 Tu-Th 2:00-3:30pm 203 McLaughlin EE141- Spring 2002 Introduction

EE141

3

EE1415

The TA’s

Josie AmmerDiscussion + [email protected] Hours: 353 Cory

We 10-11:30am

Tufan KaralarDiscussion + [email protected] Hours: 297 Cory

Tu 11am-12:30pm

Jason HuHead Lab [email protected].

EE1416

The Web-Site

l Class and lecture notesl Assignments and solutionsl Lab and project informationl Examsl Many other goodies …

The sole source of informationhttp://bwrc.eecs.berkeley.edu/Classes/ee141

Save a tree!

Page 4: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/... · EE141 1 EE141 1 Tu-Th 2:00-3:30pm 203 McLaughlin EE141- Spring 2002 Introduction

EE141

4

EE1417

Class Admission

l Class is overenrolled» Class room only seats 65 + 15» But … videotaped» Also webcasted (http://webcast.berkeley.edu)

l Admission priorities» Graduating seniors» First-year grads» Juniors, other grads» Concurrent enrollmentMake sure your name is on the class roll!

EE1418

Discussions and Labs

l Discussion sessions» Tu 4-5pm, 203 McLaughlin – Tufan» We 9-10am, 293 Cory – Josie » Pick any of the two (the are covering the same material)

l Labs (353 Cory)» Mo 8-11am (Tufan)» Mo 11-2pm -> Th 3:30-6:30pm (Jason)» Tu 8-11am (Jason)» W 11-2pm (Josie)» Pick the one that fits you the best (pending availability) and

STICK TO IT!

Page 5: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/... · EE141 1 EE141 1 Tu-Th 2:00-3:30pm 203 McLaughlin EE141- Spring 2002 Introduction

EE141

5

EE1419

The EE141 Week at a Glance

M

T

W

R

F

8 9 10 11 12 1 2 3 4 5 6

Lab(Jason)353 Cory

Lab(Tufan)353 Cory

Lab(Jason)353 Cory

Lab (Josie)353 Cory

OH(Jan)

231 Cory

DISC*(Josie)293 Cory

DISC*(Tufan)

203 McLaughlin

OH (Josie)353 Cory

Lec(Jan)

203 McLaughlin

OH(Tufan)297 Cory

<- ProblemSets Due

OH(Jan)

231 Cory

Lec(Jan)

203 McLaughlin

* Discussion sections will cover identical material

EE14110

Class Organization

l 10 Assignmentsl A couple of design projects (1 term

project)l Labs: 6 software, 1 hardwarel 2 midterms, 1 final

» Midterm 1: Tu, February 6, 6:30-8:30pm » Midterm 2: Th, April 11, 6:30-8:30pm» Final: Fr. May 17, 12:30-3:30pm

Page 6: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/... · EE141 1 EE141 1 Tu-Th 2:00-3:30pm 203 McLaughlin EE141- Spring 2002 Introduction

EE141

6

EE14111

Grading Policy

l Homeworks: 10%l Labs: 10%l Projects: 20%l Midterms: 30%l Final: 30%

EE14112

Class Material

l Textbook: “Digital Integrated Circuits – A Design Perspective”, by J. Rabaey

l Class notes: Web page + Copy Central (New stuff!)

l Lab Reader:Available on the web page!Selected material will be made available from Copy

Central

l Check web page for the availability of tools

Page 7: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/... · EE141 1 EE141 1 Tu-Th 2:00-3:30pm 203 McLaughlin EE141- Spring 2002 Introduction

EE141

7

EE14113

Software

l MicroMagic» Schematic editor: Sue» Layout editor: Max» Online documentation and tutorials

l HSPICE and IRSIM for simulation

EE14114

Getting Started

l Assignment 1: Getting SPICE to work –see web-page

l NO discussion sessions or labs this week.

l First discussion sessions in Week 2l First Software Lab in Week 2

Page 8: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/... · EE141 1 EE141 1 Tu-Th 2:00-3:30pm 203 McLaughlin EE141- Spring 2002 Introduction

EE141

8

EE14115

Introduction

l Why is designing digital ICs different today than it was before?

l Will it change in future?

EE14116

The First Computer

The BabbageDifference Engine(1832)

25,000 partscost: £17,470

Page 9: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/... · EE141 1 EE141 1 Tu-Th 2:00-3:30pm 203 McLaughlin EE141- Spring 2002 Introduction

EE141

9

EE14117

ENIAC - The first electronic computer (1946)

EE14118

The Transistor Revolution

First transistorBell Labs, 1948

Page 10: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/... · EE141 1 EE141 1 Tu-Th 2:00-3:30pm 203 McLaughlin EE141- Spring 2002 Introduction

EE141

10

EE14119

The First Integrated Circuits

Bipolar logic1960’s

ECL 3-input GateMotorola 1966

EE14120

Intel 4004 Micro-Processor

Page 11: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/... · EE141 1 EE141 1 Tu-Th 2:00-3:30pm 203 McLaughlin EE141- Spring 2002 Introduction

EE141

12

EE14123

Moore’s Law

lIn 1965, Gordon Moore noted that the number of transistors on a chip doubled every 18 to 24 months.

lHe made a prediction that semiconductor technology will double its effectiveness every 18 months

EE14124

Moore’s Law16151413121110

9876543210

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

LO

G2

OF

TH

E N

UM

BE

R O

FC

OM

PO

NE

NT

S P

ER

INT

EG

RA

TE

D F

UN

CT

ION

Electronics, April 19, 1965.

Page 12: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/... · EE141 1 EE141 1 Tu-Th 2:00-3:30pm 203 McLaughlin EE141- Spring 2002 Introduction

EE141

13

EE14125

Evolution in Complexity

EE14126

Transistor Counts

1,000,000

100,000

10,000

1,000

10

100

11975 1980 1985 1990 1995 2000 2005 2010

8086

80286i386

i486Pentium®

Pentium® Pro

K1 Billion 1 Billion

TransistorsTransistors

Source: IntelSource: Intel

ProjectedProjected

Pentium® IIPentium® III

Page 13: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/... · EE141 1 EE141 1 Tu-Th 2:00-3:30pm 203 McLaughlin EE141- Spring 2002 Introduction

EE141

14

EE14127

Moore’s law in Microprocessors

40048008

80808085 8086

286386

486Pentium® proc

P6

0.001

0.01

0.1

1

10

100

1000

1970 1980 1990 2000 2010Year

Tra

nsi

sto

rs (

MT

)2X growth in 1.96 years!

Transistors on Lead Microprocessors double every 2 yearsTransistors on Lead Microprocessors double every 2 years

S. Borkar

EE14128

Moore’s Law - Logic Density

ÊShrinks and compactions meet density goalsËNew micro-architectures drop density

ÊShrinks and compactions meet density goalsËNew micro-architectures drop density

Sou

rce:

Inte

lPentium (R)Pentium Pro (R) 486

386

i860

1

10

100

1000

1.5µ

1.0µ

0.8µ

0.6µ

0.35

µ

0.25

µ

0.18

µ

0.13

µ

Lo

gic

Den

sity

2x trend

Lo

gic

Tra

nsi

sto

rs/m

m2

Pentium II (R)

Page 14: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/... · EE141 1 EE141 1 Tu-Th 2:00-3:30pm 203 McLaughlin EE141- Spring 2002 Introduction

EE141

15

EE14129

Die Size Growth

40048008

80808085

8086286

386486Pentium ® proc

P6

1

10

100

1970 1980 1990 2000 2010Year

Die

siz

e (m

m)

~7% growth per year~2X growth in 10 years

Die size grows by 14% to satisfy Moore’s LawDie size grows by 14% to satisfy Moore’s Law

S. Borkar

EE14130

Frequency

P6Pentium ® proc

48638628680868085

8080800840040.1

1

10

100

1000

10000

1970 1980 1990 2000 2010Year

Fre

qu

ency

(M

hz)

Lead Microprocessors frequency doubles every 2 yearsLead Microprocessors frequency doubles every 2 years

Doubles every2 years

S. Borkar

Page 15: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/... · EE141 1 EE141 1 Tu-Th 2:00-3:30pm 203 McLaughlin EE141- Spring 2002 Introduction

EE141

16

EE14131

Processor Frequency Trend

386486

Pentium(R)

Pentium Pro(R)

Pentium(R) II

MPC750604+604

601, 603

21264S

2126421164A

2116421064A

21066

10

100

1,000

10,000

1987

1989

1991

1993

1995

1997

1999

2001

2003

2005

Mh

z

1

10

100

Gat

e D

elay

s/ C

lock

Intel

IBM Power PC

DEC

Gate delays/clock

Processor freq scales by 2X per

generation

Ê Frequency doubles each generationË Number of gates/clock reduce by 25%

V.De, S. BorkarISLPED’99

EE14132

Power

P6Pentium ® proc

486

3862868086

80858080

80084004

0.1

1

10

100

1971 1974 1978 1985 1992 2000Year

Po

wer

(W

atts

)

Lead Microprocessors power continues to increaseLead Microprocessors power continues to increase

S. Borkar

Page 16: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/... · EE141 1 EE141 1 Tu-Th 2:00-3:30pm 203 McLaughlin EE141- Spring 2002 Introduction

EE141

17

EE14133

Obeying Moore’s Law…

40048008

80808085 8086

286386

486Pentium ® procP6

0.001

0.01

0.1

1

10

100

1000

10000

1970 1980 1990 2000 2010Year

Tra

nsi

sto

rs (

MT

) 900M

1.8B

425M200M

200M--1.8B transistors on the Lead Microprocessor200M--1.8B transistors on the Lead Microprocessor

S. Borkar

EE14134

Processor Power

386386

486 486

Pentium(R)Pentium(R)

MMX

Pentium Pro (R)

Pentium II (R)

1

10

100

1.5µ 1µ 0.8µ 0.6µ 0.35µ 0.25µ 0.18µ 0.13µ

Max

Po

wer

(W

atts

) ?

Ê Lead processor power increases every generation

Ë Compactions provide higher performance at lower power

Sou

rce:

Inte

l

Page 17: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/... · EE141 1 EE141 1 Tu-Th 2:00-3:30pm 203 McLaughlin EE141- Spring 2002 Introduction

EE141

18

EE14135

Power will be a problem

5KW 18KW

1.5KW 500W

40048008

80808085

8086286

386486

Pentium® proc

0.1

1

10

100

1000

10000

100000

1971 1974 1978 1985 1992 2000 2004 2008Year

Po

wer

(W

atts

)

Power delivery and dissipation will be prohibitivePower delivery and dissipation will be prohibitive

S. Borkar

EE14136

Power density will increase

400480088080

8085

8086

286 386486

Pentium® procP6

1

10

100

1000

10000

1970 1980 1990 2000 2010Year

Po

wer

Den

sity

(W

/cm

2)

Hot Plate

NuclearReactor

RocketNozzle

Power density too high to keep junctions at low tempPower density too high to keep junctions at low temp

S. Borkar

Page 18: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/... · EE141 1 EE141 1 Tu-Th 2:00-3:30pm 203 McLaughlin EE141- Spring 2002 Introduction

EE141

19

EE14137

Power delivery challenges

P6Pentium® proc

486386286

8086

80858080

800840040.01

0.10

1.00

10.00

100.00

1,000.00

1970 1980 1990 2000 2010Year

Icc

(am

p)

P6Pentium® proc

486386

286

8086

80858080

80084004

1.E-041.E-031.E-021.E-011.E+001.E+011.E+021.E+031.E+041.E+051.E+061.E+07

1970 1980 1990 2000 2010Year

L(d

i/dt)

/Vd

d

High supply currents at low voltage:Challenges: IR drop and L(di/dt) noiseHigh supply currents at low voltage:

Challenges: IR drop and L(di/dt) noise

S. Borkar

EE14138

Not Only Microprocessors

Digital Cellular Market(Phones Shipped)

1996 1997 1998 1999 2000

Units 48M 86M 162M 260M 435M Analog Baseband

Digital Baseband

(DSP + MCU)

PowerManagement

Small Signal RF

PowerRF

(data from Texas Instruments)(data from Texas Instruments)

CellPhone

Page 19: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/... · EE141 1 EE141 1 Tu-Th 2:00-3:30pm 203 McLaughlin EE141- Spring 2002 Introduction

EE141

20

EE14139

Productivity Trends

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

2003

1981

1983

1985

1987

1989

1991

1993

1995

1997

1999

2001

2005

2007

2009

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

Logic Tr./ChipTr./Staff Month.

xxx

xxx

x

21%/Yr. compoundProductivity growth rate

x

58%/Yr. compoundedComplexity growth rate

10,000

1,000

100

10

1

0.1

0.01

0.001

Lo

gic

Tra

nsi

sto

r p

er C

hip

(M)

0.01

0.1

1

10

100

1,000

10,000

100,000

Pro

du

ctiv

ity

(K)

Tra

ns.

/Sta

ff -

Mo

.

Source: Sematech

Complexity outpaces design productivity

Co

mp

lexi

ty

EE14140

Challenges in Digital Design

“Microscopic Problems”• Ultra-high speed design• Interconnect• Noise, Crosstalk• Reliability, Manufacturability• Power Dissipation• Clock distribution.

Everything Looks a Little Different

“Macroscopic Issues”• Time-to-Market• Millions of Gates• High-Level Abstractions• Reuse & IP: Portability• Predictability• etc.

…and There’s a Lot of Them!

∝ DSM ∝ 1/DSM

?

Page 20: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/... · EE141 1 EE141 1 Tu-Th 2:00-3:30pm 203 McLaughlin EE141- Spring 2002 Introduction

EE141

21

EE14141

Design Abstraction Levels

n+n+S

GD

+

DEVICE

CIRCUIT

GATE

MODULE

SYSTEM

EE14142

Why Scaling?

l Technology shrinks by 0.7/generationl With every generation can integrate 2x more

functions per chip; chip cost does not increase significantly

l Cost of a function decreases by 2xl How to design chips with more and more functions?l Design engineering population does not double every

two years…l Need to understand different levels of abstraction

Page 21: Introduction to Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/... · EE141 1 EE141 1 Tu-Th 2:00-3:30pm 203 McLaughlin EE141- Spring 2002 Introduction

EE141

22

EE14143

Next Class

l Introduces basic metrics for design of integrated circuits – how to measure delay, power, etc.

l Brief intro to IC manufacturing and design