deconstruction management for optimized material recovery: rota flora

25
HafenCity University Hamburg M.Sc. Resource Efficiency in Architecture and Planning Technologies for Sustainable Material Cycles Winter Semester 2015/16 Final Report Deconstruction Management for Optimized Material Recovery: Rota Flora Submitted to: Dr. Wolfram Trinius Submitted on: March 14 th , 2016 Contributing Authors: ArrashJan Paivasteh Bueno – 000000 Heather Troutman – 6028601 Tobias Kelm – 000000

Upload: heather-troutman

Post on 07-Jan-2017

41 views

Category:

Engineering


6 download

TRANSCRIPT

Page 1: Deconstruction Management for Optimized Material Recovery: Rota Flora

HafenCity  University  Hamburg  M.Sc.  Resource  Efficiency  in  Architecture  and  Planning  

Technologies  for  Sustainable  Material  Cycles  Winter  Semester  2015/16    

 Final  Report  

 Deconstruction  Management  for  Optimized  Material  Recovery:  

Rota  Flora  

Submitted  to:  Dr.  Wolfram  Trinius  Submitted  on:  March  14th,  2016  

 Contributing  Authors:  

Arrash-­‐‑Jan  Paivasteh  Bueno  –  000000  Heather  Troutman  –  6028601  

Tobias  Kelm  –  000000    

Page 2: Deconstruction Management for Optimized Material Recovery: Rota Flora

HCU  -­‐‑  REAP  –  TSMC  Sustainable  Deconstruction  –  Rota  Flora    

2  

Abstract    

“The  goal  is  to  move  the  fundamental  thinking  away  from  ‘waste  disposal’  to  ‘waste  management’  and  from  ‘waste’  to  ‘resources’  –  hence  the  updated  terminology  ‘waste  and  resource  management’  and  ‘resource  management’,  as  part  of  the  Circular  Economy”  (UNEP,  2015).      Waste  management  and,  now,  resource  management  have  become  regular  topics  on  the  global  agenda,  especially  in  the  context  of  sustainable  development  and  Circular  Economy.    Of  the  United  Nations’  (2015)  17  Sustainable  Development  Goals:  the  2030  agenda,  12  of  the  17  goals  are  related  to  improved  waste  management,  which  is  seen  as  an  entry  point  for  sustainable  development  and  a  most  basic  indicator  for  quality  of  life.    According  to  the  United  Nations  Environmental  Programme’s  (UNEP)  (2015)  “Global  Waste  Management  Outlook”  (GWMO),  36%  of  all  waste  produced  globally  in  2013  was  construction  and  demolition  wastes  (C&D),  representing  the  largest  waste  category.    30%  of  global  C&D  wastes,  or  821  million  tonnes,  was  produced  in  the  European  Union  (EU).    “Due  to  the  high  variety  of  materials,  it  is  important  that  the  C&D  waste  be  segregated  at  source,  with  each  stream  managed  as  required”  (UNEP,  2015).          This  report  examines  the  original  construction  and  long  history  of  renovations  of  the  culturally  significant  Rota  Flora  in  Hamburg,  Germany,  developing  a  multi-­‐‑criteria  analysis  tool  based  upon  the  German  Sustainable  Building  Council’s  (DGNB)  Sustainable  Construction  Methodology  adopted  to  the  unique  situation  of  the  Rota  Flora.    The  aim  of  this  assessment  is  to  identify  the  most  sustainable  deconstruction  pathway  from  four  scenarios,  considering  the:    

•   Ecological  Quality,  •   Economic  Quality,  •   Socio-­‐‑Cultural  and  Functional  Quality,  •   Technical  Quality,  and  •   Process  Quality.  

 The  analysis  concludes  that  the  most  sustainable  deconstruction  scenario  is  one  that  incorporates  the  concerns  and  ideas  of  the  citizens  and  preserves  the  highest  quality  and  quantity  of  building  materials  for  direct  re-­‐‑use  as  a  main  priority  and  recycling  as  a  second  priority,  following  the  European  Commission’s  “Waste  Hierarchy”  as  prescribed  in  the  Waste  Directive  (2008/98/EC).  

                 

Page 3: Deconstruction Management for Optimized Material Recovery: Rota Flora

HCU  -­‐‑  REAP  –  TSMC  Sustainable  Deconstruction  –  Rota  Flora    

3  

Table  of  Contents    

1.  Historical  Context………………………………………………..…………………………………….……………….06                 1.1  Cultural  Significance……………………………………………………………………………………..06  

 1.2.  Refurbishment  Ambiguity……………………………………..……………………………………..06  

 2.  Waste  Directive….…………………………………………………………………………...………………………….07    3.  Materials………….…………………………..……………………………………………………………………………..07        

3.1  Brick………….…………………………………………………………………………………………………..09       3.2.  Wood………….…………………………………………………………………………………………………11       3.3.  Glass………..……………………………………………………………………………………………………11    

3.4.  Steel…………….……………….……………………………………………………………………………….12         3.5.  Re-­‐‑enforced  Concrete……………………………………………………………………………………12    

3.6.  Screed…………………………………………………………………………………………………………..13    

3.7.  Plaster………………………….……………………………………………………………………………….13    

3.8.  Bitumen…………………………………………………….………………………………………………….14    

3.9.  Comparison  of  all  materials  ……………….…….………………………………………………….14      4.  Main  Objectives  for  Sustainability………………………………………………….………...…..…………….15       4.1.  Ecological  Quality  ……….………………………………………………………………………………..15    

4.2.  Economic  Quality  …………………………………………………………………………………………15       4.3.  Socio-­‐‑Cultural  and  Functional  Quality  …………………………………………………………16    

4.4.  Technical  Quality  …………………………………………………………………………………………16    

4.5.  Process  Quality  …………………..…….………………………………………………………………….16    5.  Deconstruction  Scenarios…………………………………………………………….….………………………….17       5.1.  Scenario  One:  The  Quickest…………………………………………………………………………..17       5.2.  Scenario  Two:  Recovery  of  the  Highest  Material  Quantity  and  Quality…………17    

5.3.  Scenario  Three:  The  Cheapest………………………………………………………………………19    

5.4.  Scenario  Four:  Most  Socially  Agreeable………….…………………………………………….19      

Page 4: Deconstruction Management for Optimized Material Recovery: Rota Flora

HCU  -­‐‑  REAP  –  TSMC  Sustainable  Deconstruction  –  Rota  Flora    

4  

6.  Comparison  of  the  Four  Scenarios  for  Optimal  Sustainability…………….………………………20    

6.1.  Ecological  Quality…………………………………………………………………………………………20    

6.2.  Economic  Quality…………………………………….……………………………………………………21    

6.3.  Socio-­‐‑Cultural  and  Functional  Quality…………………………………………………..………22    

6.4.  Technical  Quality…………………….……………………………………………………………………22    

6.5.  Process  Quality……………………………..………………………………………………………………22    

6.6.  Results…………………………….……………………………………………………………………………23    7.  Conclusion:  Planned  Deconstruction  for  Enhanced  Sustainability…………………...…………24            

Diagrams,  Figures  and  Tables    Table  3.   Estimated  total  amount  of  materials  in  the  Rote  Flora,  by  volume  [m³]…………...07    Figure  3.  Exploded  drawing:  Approximately  location  of  main  materials………………………..08    Chart  3.  Estimated  total  amount  of  materials  in  the  Rote  Flora,  by  volume  [m³]…………….08    Diagram  3.1.  Structural  use  of  brick…………………………………………………..…………………………..09    Section  3.1.   Typical  brick  structure.....................................................................................................09    Figure  3.1.   Berlin-­‐‑Wall:  Street-­‐‑Art…………………………………………………………………………………10    Section  3.2.  Typical  wood  floor  construction....................................................................................11    Figure  3.4.  Steel  column  on  the  ground  floor………………………………………………………………….12    Table  3.9.  Multi-­‐‑Criteria  Assessment  of  Main  Building  Materials……………………………………14    Figure  4.  BMUBS’  Assessment  System  for  Sustainable  Building………………………………………15    Table  6.  Multi-­‐‑Criteria  Analysis  of  Deconstruction  Scenarios…………………………………………20    Table  6.1.  Environmental  Impact  Categories………………………………………………………………….21    Figure  6.6.  Summary  of  Multi-­‐‑Criteria  Assessment  of  Deconstruction  Scenarios……………23          

Page 5: Deconstruction Management for Optimized Material Recovery: Rota Flora

HCU  -­‐‑  REAP  –  TSMC  Sustainable  Deconstruction  –  Rota  Flora    

5  

Definitions    The  definitions  used  in  this  report  are  taken  form  the  European  Commission’s  Waste  Directive  (2008/98/EC),  Article  3.          Collection:  means  the  gathering  of  waste,  including  the  preliminary  sorting  and  preliminary  storage  of  waste  for  the  purposes  of  transport  to  a  waste  treatment  facility.    Disposal:  means  any  operation  which  is  not  recovery  even  where  the  operation  has  as  a  secondary  consequence  the  reclamation  of  substance  or  energy.    Annex  I  sets  out  a  non-­‐‑exhaustive  list  of  disposal  operations  [of  2008/98/EC].      Hazardous  Waste:  means  waste  which  displays  one  or  more  of  the  hazardous  properties  listed  in  Annex  III  [of  2008/98/EC].    Prevention:  means  measures  taken  before  a  substance,  material  or  product  has  become  waste,  that  reduce:  

(a)   the  quantity  of  waste,  including  through  the  re-­‐‑use  of  products  or  the  extension  of  the  life  span  of  products;  

(b)  the  adverse  impacts  of  the  generated  waste  on  the  environment  and  human  health;  or  

(c)   the  contents  of  harmful  substances  in  materials  and  products.    Recovery:  means  any  operation  the  principle  result  of  which  is  waste  serving  a  useful  purpose  by  replacing  other  materials  which  would  otherwise  have  been  to  fulfil  a  particular  function,  or  waste  being  prepared  to  fulfil  that  function,  in  the  plant  or  in  the  wider  economy.    Annex  II  [of  2008/98/EC]  sets  out  a  non-­‐‑exhaustive  list  of  recovery  operations.    Recycling:  means  any  recovery  operation  by  which  waste  materials  or  substances  whether  for  the  original  or  other  purposes.    It  includes  the  reprocessing  of  organic  material  but  does  not  include  energy  recovery  and  the  reprocessing  into  materials  that  are  to  be  used  as  fuels  or  for  backfilling  operations.    Re-­‐‑Use:  means  any  operation  by  which  products  or  components  that  are  not  waste  are  used  again  for  the  same  purpose  for  which  they  were  conceived.      Separate  Collection:  means  the  collection  where  a  waste  stream  is  kept  separately  by  type  and  nature  so  as  to  facilitate  a  specific  treatment.    Treatment:  means  recovery  or  disposal  operations,  including  preparation  prior  to  recovery  or  disposal.    Waste:  means  any  substance  or  object  which  the  holder  disregards  or  intends  or  is  required  to  discard.    Waste  Management:  means  the  collection,  transport,  recovery  and  disposal  of  waste,  including  the  supervision  of  such  operations  and  the  after-­‐‑care  of  disposal  sites,  and  including  actions  taken  as  a  dealer  or  broker.          

Page 6: Deconstruction Management for Optimized Material Recovery: Rota Flora

HCU  -­‐‑  REAP  –  TSMC  Sustainable  Deconstruction  –  Rota  Flora    

6  

1.  Historical  Context    For  our  exemplary  object  analysis,  we  have  chosen  the  controversial  building  Rote  Flora.  The  Rote  Flora  was  built  in  the  year  1888  in  Hamburg,  in  the  district  Sternschanze.  In  former  days  it  was  used  as  a  concert  hall.    Some  Parts  of  the  building  were  added  and  taken  away  again,  like  the  conservatory  from  Gustave  Eiffel  in  1890.    The  use  of  the  building  also  changed  a  few  times.    Over  the  last  128  years,  the  Flora  was  a  residential  building,  concert  hall,  Viennese  café,  room  for  public  events,  theatre,  school,  factory,  cinema,  shop  and  much  more.        

1.1.  Cultural  Significance  Fortunately,  the  Rota  Flora  was  one  of  few  theatres  in  Hamburg  not  damaged  during  airstrikes  of  the  2nd  world  war.    In  the  year  1974,  the  two  upper  stories  were  removed  and  replaced  by  a  flat  roof,  drastically  changing  the  appearance  of  the  building.    In  1989,  the  building  had  been  planned  to  be  sold  and  demolished.    To  prevent  the  Flora  from  demolishment,  it  was  occupied  by  an  autonomic  group  of  people  who  violently  rioted  against  militant  groups  attempting  evection  on  numerous  occasions  over  the  past  37  years.    Since  that  time,  the  building  is  an  uncomfortable  subject  for  the  city  and  the  “autonomic  centre”  in  Hamburg.    

   1.2.  Refurbishment  Ambiguity  

The  Rote  Flora  was  constructed  in  the  Gründerzeit  at  the  end  of  the  19th  century.  The  typical  materials  used  were  rarely  synthetically  fabricated;  but,  rather,  more  natural  compared  to  the  materials  that  are  commonly  used  today.    However,  due  to  the  many  changes  in  use  and  modernization  projects  that  have  been  carried  out  on  the  Flora  over  the  past  128  years,  there  exists  a  high  level  of  uncertainty  as  to  the  actual  material  composition  of  the  building.    This  analysis  has  reviewed  refurbishment  documents  for  the  building  and  has  made  assumptions  of  the  materials  likely  employed  considering  the  most  common  materials  used  in  construction  in  Germany  at  the  time  the  renovation  was  made.    The  bearing  walls  and  foundation  of  the  building  are  made  out  of  bricks.    These  are  still  the  original  ones.    The  ceiling  between  the  ground  and  the  first  floor  is  also  original.    It  consists  of  beams,  made  of  wood,  with  a  wooden  floor  and  a  rubble  filling  inside.    The  ceiling  of  the  basement  is  an  old  Kappendecke,  which  was  a  typical  way  of  constructing  at  that  time.    It  is  made  of  bricks  and  steel  beams.      After  the  two  upper  stories  were  removed  in  the  late  1970s,  a  new  roof  was  built.    The  new  flat  roof  is  a  simple,  wooden  construction  with  a  bitumen  sealant  on  it.    Just  like  the  bitumen  on  the  roof,  other  newer  materials  and  components,  such  as  new  windows,  electric-­‐‑,  sanitary-­‐‑  and  heating  systems,  et  cetera  have  been  added  over  the  years.    There  might  be  a  risk  of  having  hazardous  materials,  such  as  various  kinds  of  sealants,  paints  or  even  asbestos  in  the  construction  substance.    In  case  of  an  unlikely  deconstruction  of  the  Flora,  the  building  substance  has  to  be  carefully  tested  for  hazardous  materials.            

Page 7: Deconstruction Management for Optimized Material Recovery: Rota Flora

HCU  -­‐‑  REAP  –  TSMC  Sustainable  Deconstruction  –  Rota  Flora    

7  

2.  Waste  Directive    Commission  (2008/98/EC)  In  2008,  the  European  Commission  adopted  the  Waste  Directive(2008/98/EC),  which  prescribes  a  “Waste  Hierarchy”  as  “a  priority  order  in  the  waste  prevention  and  management  legislation  and  policy.”    The  “Waste  Hierarchy”  requires  that  waste  management  strategies  prioritize  prevention,  followed  by  reuse,  then  recycling,  then  recovery  (including  energy  recovery)  and  resulting  to  disposal  only  when  no  other  alternatives  exist.    Circular  Economy  Package  (2014)  The  existing  Waste  Directive  is  currently  under  review  within  the  proposed  Circular  Economy  Package  (2014),  scheduled  to  come  into  effect  late  2017.    The  new  proposal  outlines  that  strategies  for  a  Circular  Economy,  which  maintain  materials  and  products  at  their  highest  value  for  as  long  as  possible,  is  not  only  the  most  sustainable  option,  but  also  an  option  that  offers  unprecedented  financial  gain  to  the  European  economy  in  the  form  of  forgone  losses.          This  assessment  has  been  completed  in  attempt  to  uphold  these  initiatives  and  ideals.      3.  Materials    All  masses  of  the  materials  are  estimated  according  to  our  analysis  of  the  building  by  on-­‐‑site-­‐‑visiting,  literature,  photos  and  our  3D-­‐‑Modell.    Due  to  the  different  users  and  refurbishing  since  its  existent  it  is  difficult  to  determine  every  material  in  the  building.  This  is  the  reason  why  we  have  decided  to  concentrate  on  the  main  materials:  

-­‐   Brick  -­‐   Wood  -­‐   Glass  -­‐   Steel  -­‐   Re-­‐‑enforced  concrete  -­‐   Screed  -­‐   Plaster  

 

 

Table  3.   Estimated  total  amount  of  materials  in  the  Rote  Flora,  by  volume  [m³]  

Page 8: Deconstruction Management for Optimized Material Recovery: Rota Flora

HCU  -­‐‑  REAP  –  TSMC  Sustainable  Deconstruction  –  Rota  Flora    

8  

   

 

   

                                         

Figure  3.  Exploded  drawing:  Approximately  location  of  main  materials  

Chart  3.  Estimated  total  amount  of  materials  in  the  Rote  Flora,  by  volume  [m³]  g  

Page 9: Deconstruction Management for Optimized Material Recovery: Rota Flora

HCU  -­‐‑  REAP  –  TSMC  Sustainable  Deconstruction  –  Rota  Flora    

9  

 3.1.  Brick    Quantity  Despite  its  historical  age  and  modernization,  the  main  material  is  brick.  The  outer  and  the  load  bearing  walls  are  still  out  of  bricks.    

   

     

 

   

Diagram  3.1.  Structural  use  of  brick.  

Section  3.1.   Typical  brick  structure.    Source:  Rudolf  Ahnert  and  Karl  Heinz  Krause,  2009,  page  47  

Page 10: Deconstruction Management for Optimized Material Recovery: Rota Flora

HCU  -­‐‑  REAP  –  TSMC  Sustainable  Deconstruction  –  Rota  Flora    

10  

 Quality  The  quality  of  the  bricks  are  mainly,  despite  its  age,  still  in  a  good  condition.  The  primary  problem  though,  is  to  deconstruct  the  bricks  without  damaging  them.      After-­‐‑Use  Markets  Recycling  old  bricks  is  not  difficult,  because  of  its  natural  fabrication.    It  is  therefore  not  a  big  problem  to  transport  the  deconstructed  bricks  to  a  building  material  recycling  facility.  There  are  several  located  in  Hamburg.    One  of  them  is  the  Acht  GmbH  -­‐‑  Aufbereitungscentrum,  Hafen  und  Transportlogistik  located  in  HH-­‐‑Veddel.    They  transport  or  recycle  different  types  of  demolition  waste.  Another  option  would  also  be  to  deconstruct  the  bricks  for  re-­‐‑usage  in  a  new  building.  This  means  when  the  bricks  are  “detaches”  carefully,  they  can  be  sold.      Example:    20.000  hand-­‐‑made  bricks  from  an  old  monastery  were  sold  0,5€  per  brick.    That  means  the  bricks  had  a  value  of  10.000€.    Re-­‐‑Use  Best  Practice  Instead  of  selling  or  recycling  them,  which  is  the  most  common  case,  it  is  also  possible  to  keep  several  parts  of  the  walls,  by  “detaching”  a  segment  of  the  wall  for  graffiti  or  street  art  purpose,  similar  to  the  Berlin-­‐‑Wall.      

   

 

Main  concerns  The  main  concern,  as  already  mentioned,  would  be  the  deconstruction  method.    It  has  to  be  carefully  planned  depending  on  what  is  going  to  happen  with  the  bricks  after  the  demolition.    If  the  bricks  are  planned  to  be  re-­‐‑used  it  is  important  to  keep  the  quality  of  the  bricks.    The  damaged  ones  can  be  used  for  ground  filling.          

Figure  3.1.   Berlin-­‐‑Wall:  Street-­‐‑Art.  Source:  Uberding   7

Page 11: Deconstruction Management for Optimized Material Recovery: Rota Flora

HCU  -­‐‑  REAP  –  TSMC  Sustainable  Deconstruction  –  Rota  Flora    

11  

 3.2.  Wood            Quantity  The  first  floor  is  made  out  of  a  wooden  beam  construction.    Based  on  our  research  we  assume  the  construction  method  is  based  back  to  late  19th  century.    The  surfaces  of  the  stair  cases  are  also  made  out  of  wood.      

     

  Quality  The  wood  is  in  a  good  condition.  It  is  possible  to  strip  the  wood  of  carefully  and  re-­‐‑use  them.    After-­‐‑Use  Markets  Similar  to  the  bricks,  wood  is  a  natural  building  material,  which  makes  it  easy  to  re-­‐‑use  or  even  to  sell.    There  are  several  recycling  facilities  in  Hamburg  which  can  handle  a  big  amount  of  construction  wood.      Re-­‐‑Use  Best  Practice  It  is  not  only  possible  to  re-­‐‑use  the  wood  for  construction  or  flooring  but  also  for  energy-­‐‑usage  (pellets)  or  for  the  particleboard  industry  (Reiling,  2016).    Another  option  is  also  using  bits  and  pieces  of  old  wood  for  furniture  or  industrial  products.    For  example,  the  company  HAFENHOLZ  (2016),  which  is  located  in  Hamburg,  specializes  in  the  re-­‐‑using  of  wood.    Main  concerns  Wood  is  a  natural  building  material,  which  needs  treatment  depending  on  its  usage.    It  is  therefore  important  to  determine  how  damaged  or  how  much  impregnation  is  in  the  wood  for  further  usage.    It  is  also  important  to  detach  the  wood  first  when  demolishing  the  building  to  prevent  any  damage.      3.3.  Glass    Quantity  The  amount  of  glass  is  located  on  the  outer  walls  and  is  not  much  compared  to  bricks  or  wood.    Quality  

Section  3.2.  Typical  wood  floor  construction.    Source:  Rudolf  Ahnert  and  Karl  Heinz  Krause,  2009,  page  9  

Page 12: Deconstruction Management for Optimized Material Recovery: Rota Flora

HCU  -­‐‑  REAP  –  TSMC  Sustainable  Deconstruction  –  Rota  Flora    

12  

Due  to  the  refurbishment  of  the  Rote  Flora  all  the  glass/windows  have  been  changed/renewed.    This  means  there  are  probably  different  types  of  windows  in  different  qualities.    After-­‐‑Use  Markets  The  glass  itself  is  usually  detached  from  the  frame  and  further  processed  for  glass-­‐‑recycling  (Siventas  GmbH,  2016).    Re-­‐‑Use  Best  Practice  The  glass  is  brought  to  a  recycling  waste  management  and  processed  back  to  glass.    Main  Concerns  Nowadays,  glass  consist  of  different  types  of  mixtures  and  gases,  which  needs  to  be  sorted  out  to  make  it  recyclable.      3.4.  Steel    Quantity  There  a  four  steel  columns  in  the  ground  floor  and  steel  beams  integrated  in  the  Kappendecke.    Quality  It  is  not  possible  to  determine  the  quality  of  the  steel  beam  in  the  ceiling  of  the  basement,  but  we  assume  that  it  is  still  in  a  good  condition.  The  steel  column  is  also  in  a  good  condition.    After-­‐‑Use  Markets  Steel  is  one  of  the  most  recycled  materials  in  world  and  doesn’t  lose  its  quality.  It  is  therefore  no  problem  to  detach  the  steel  and  recycle  it  (eBay,  2015).    Re-­‐‑Use  Best  Practice  Despite  its  high  recyclability  and  resistance,  it  is  also  a  possible  to  deconstruct  the  steel  beams  or  columns  and  reuse  them  in  a  different  building.    Main  Concerns  It  is  important  to  check  the  steel  for  any  corrosion  if  it  is  going  to  be  reused  in  a  new  building.        3.5.  Re-­‐‑Enforced  Concrete    Quantity  The  stair  cases  and  the  main  stair  case  are  made  out  of  reinforced  concrete.      Quality  They  are  in  top  condition  and  show  no  damaged  areas    

Figure  3.4.  Steel  column  on  the  ground  floor  

Page 13: Deconstruction Management for Optimized Material Recovery: Rota Flora

HCU  -­‐‑  REAP  –  TSMC  Sustainable  Deconstruction  –  Rota  Flora    

13  

After-­‐‑Use  Markets  Reinforced  concrete  is  often  recycled  by  crushing  it  to  be  used  as  granular  filling.  There  are  several  facilities  which  can  recycle  a  big  amount  in  Hamburg.    Re-­‐‑Use  Best  Practice  Besides  the  concrete,  the  reinforcement  out  of  steel  is  often  melted  and  reused  for  other  steel  components  (Buhck  Gruppe,  2016).    The  environment  and  the  increase  usage  of  concrete  has  also  led  to  a  new  type  of  concrete,  Recycling  concrete,  also  known  as  RC-­‐‑Concrete.  It  decreases  the  costs  of  demolition  projects,  because  it  eliminates  the  costs  of  disposal  (Concrete  Network,  2016).    Main  Concerns  It  is  important  to  separate  the  concrete  from  the  steel.      3.7.  Screed    Quantity  The  surface/flooring  of  the  basement  and  ground  floor  is  made  out  of  screed.      Quality  It  is  quit  damaged  and  lots  of  different  “patching”  has  been  done.    It  means  that  the  different  users  have  most  probably  tried  to  fix  or  repair  the  surface  with  different  materials.    After-­‐‑Use  Markets  Screed  is  crushed  and  sent  to  a  waste  disposal.      Re-­‐‑Use  Best  Practice  It  is  usually  not  re-­‐‑used,  because  of  its  thin  layer  on  floorings.      Main  Concerns  When  screed  is  detached  from  the  floor  there  are  usually  other  materials  stuck  to  it  (e.g.  tar  paper,  bitumen,  etc.),  which  are  important  to  separate  (Ensortung,  2010).        3.7.  Plaster    Quantity  The  amount  of  plaster  is  mainly  located  on  the  inner  surface  of  the  Rote  Flora.    Quality  The  quality  is  overall  in  a  good  condition,  but  it  is  difficult  to  determine  where  and  how  many  types  of  plaster  has  been  used  during  the  years.    After-­‐‑Use  Markets  The  gypsum  is  sent  to  a  recycling  management  facility  where  it  is  crushed  and  sieved  until  it  is  a  fine  powder.    After  the  process,  the  powder  is  re-­‐‑used  as  a  gypsum  substance.  

Page 14: Deconstruction Management for Optimized Material Recovery: Rota Flora

HCU  -­‐‑  REAP  –  TSMC  Sustainable  Deconstruction  –  Rota  Flora    

14  

Re-­‐‑Use  Best  Practice  It  is  possible  to  use  the  regained  “gypsum”-­‐‑powder  for  gypsum  cardboard.    Main  Concerns  The  main  concern  is  the  separation  of  other  materials  to  achieve  a  clean  “powdered”-­‐‑gypsum  for  further  reuse  (Deutschlandfunk,  2016).    3.8.  Bitumen    Quantity  The  only  area  where  bitumen  is  located  is  on  the  roof.      Quality  We  were  not  able  to  go  on  the  roof,  but  we  assume  that  is  it  damage,  because  the  roof  is  not  fully  waterproof.    After-­‐‑Use  Markets  Bituminous  tarred  paper  must  be  disposed  separately  from  other  buildings  materials,  because  of  it  hazardous  substance  and  is  therefore  sent  to    a  disposal  management  facility  (Otto  Dörner,  2016).    Re-­‐‑Use  Best  Practice  As  already  mentioned,  due  to  its  hazardous  substance  it  cannot  be  re-­‐‑used.    But,  it  is  possible  to  convert  it  in  to  a  bituminous  granulate  for  asphalt  industry  (VLIE,  2016).      Main  Concerns  The  main  concern  is  the  right  disposal,  because  it  has  to  be  disposed  separately  from  other  materials.      3.9.  Comparison  of  all  Materials  The  table  gives  an  overview  of  all  the  analyzed  materials.  Our  scoring  is  based  on  the  different  categories  for  each  material.    

 

   

Table  3.9.  Multi-­‐‑Criteria  Assessment  of  Main  Building  Materials  

Page 15: Deconstruction Management for Optimized Material Recovery: Rota Flora

HCU  -­‐‑  REAP  –  TSMC  Sustainable  Deconstruction  –  Rota  Flora    

15  

 4.  Main  Objectives  for  Sustainability    The  aim  of  this  project  is  to  determine  the  most  sustainable  way  to  deconstruct  the  Rota  Flora,  in  the  hypothetical  event  that  the  such  a  plan  would  be  necessary.    We  have  adopted  the  sustainability  assessment  criteria  outlined  by  the  German  Federal  Ministry  for  the  Environment,  Nature  Conservation,  Building  and  Nuclear  Safety’s  (BMUB)  Guideline  for  Sustainable  Building  (2014),  as  shown  in  Figure  4,  and  modified  it  to  fit  the  context  of  our  project,  and  to  only  focus  on  the  deconstruction  life  cycle  phase.    

       

4.1.  Ecological  Quality  The  Ecological  Quality  indicator  aims  to  assess  the  environmental  impact  (sometimes  called  the  Environmental  Footprint)  of  the  deconstruction  plan.    This  evaluation  considers  the  required  energy  and  water  expenditures  of  the  actual  deconstruction  process,  such  as  physical  labor  and  machine  use,  as  well  as  the  resource  expenditures  associated  with  various  post-­‐‑deconstruction  material  treatment  processes.    For  example,  associated  energy  recovered  from  incineration  minus  the  impacts  of  managing  hazardous  incineration  ash  from,  for  example,  extruded  polystyrene  (XPS)  insulation  panels.         4.2.  Economic  Quality  Of  course,  economic  feasibility  must  be  considered  in  every  project.    Genuine  achievement  of  sustainability  must  incorporate  external  costs  traditionally  not  included  in  project  cost  evaluations,  such  as  avoided  energy  and  operational  costs  especially  for  the  production  of  new  materials  and  products  displaced  by  the  reuse  of  existing  materials  and  products.    Life-­‐‑Cycle  Costing  is  a  technique  prescribed  to  incorporate  non-­‐‑traditional  external  costs  by  the  German  Sustainable  Building  Council  (DGNB)  (2014),  the  Building  Research  Establishment  Environmental  Assessment  Methodology  (BREEAM)  (2014)  and  the  International  Standard  Organization’s  “Buildings  and  Construction  Assets  –  Service  Life  Planning”  (ISO  15686-­‐‑5)  (2008).  

Figure  4.  BMUBS’  Assessment  System  for  Sustainable  Building  

Page 16: Deconstruction Management for Optimized Material Recovery: Rota Flora

HCU  -­‐‑  REAP  –  TSMC  Sustainable  Deconstruction  –  Rota  Flora    

16  

 The  four  proposed  deconstruction  scenarios  for  the  Rota  Flora  are  evaluated  on  both  tradition  costs  for  deconstruction:  labor,  equipment,  permits,  and  modified  to  reflect  reduced  costs  and  economic  benefits  (both  calculated  as  negative  costs)  from  the  reusing  and  recycling  of  materials.    This  value  should  be  quantified  on  the  profits  resulting  from  sells  and  the  saved  costs  for  water,  energy,  transportation  and  raw  materials  of  creating  new,  virgin  products  that  is  prevented  in  recycling  and  reuse  scenarios.       4.3.  Socio-­‐‑Cultural  and  Functional  Quality  In  every  project,  the  social  sustainability  must  be  a  crucial  element,  as  it  is  one  of  the  three  main  pillars  of  sustainability:  people,  profit,  planet.    Social  sustainability  can  be  measure  through  inclusion  in  the  planning,  construction  and  deconstruction  process;  through  acceptance  of  the  project;  the  expected  level  of  public  health  compared  to  the  background  condition;  among  other  measures,  according  to  the  United  Nation’s  Sustainable  Development  Goals  (UNEP,  2015).    This  indicator  is  of  heightened  importance  in  our  project  considering  the  cultural  significance  of  the  building,  and  the  relevance  of  historical  violence  associated  with  attempts  to  remove  the  building.    The  aim  of  this  project  is  to  identify  a  best  case  scenario  for  deconstruction  of  this  Hamburg  monument  in  the  hypothetical  situation  that  such  activity  would  be  necessary.        In  this  situation,  the  project  can  only  be  sustainable  if  there  is  acceptance  by  from  society.           4.4.  Technical  Quality  Technical  Quality,  in  this  project,  reflects  the  overall  material  quality  and  quantity  distributions.    This  assessment  assumes  that  maintaining  each  material  at  its  highest  value  for  as  long  as  possible  is  the  most  sustainable  option.    This  assumption  is  in  accord  with  the  European  Commission’s  proposed  Circular  Economy  Package  (2014)  and  the  “Waste  Hierarchy”  adopted  by  the  Commission  (2008/98/EC)  as  “a  priority  order  in  the  waste  prevention  and  management  legislation  and  policy.”    The  “Waste  Hierarchy”  requires  that  waste  management  strategies  prioritize  prevention,  followed  by  reuse,  then  recycling,  then  recovery  (including  energy  recovery)  and  resulting  to  disposal  only  when  no  other  alternatives  exist.         4.5.  Process  Quality  For  this  project,  Process  Quality  is  interpreted  to  reflect  time  efficiency.    This  indicator  is  generally  applicable  to  all  projects  as  time  directly  translates  into  costs  for  labor,  equipment  and  permits.    In  our  project,  there  is  an  additional  implication  for  reducing  risks  associated  with  violent  protests.    It  is  assumed  that  the  faster  the  project  is  completed  the  more  sustainable  the  project,  considering  all  of  the  other  indicators.    The  reader  should  not  that  the  first  four  indicators  are  measured  evenly  at  22.5%  per  indicator.    Process  Quality,  or  Time  Efficiency,  is  considered  less  than  half  as  influential  (only  10%)  in  overall  project  sustainability  as  each  of  the  other  indicators.    The  authors  think  that  this  distribution  is  logical  because  the  direct  benefit  resulting  from  this  indicator  is  its  capacity  to  positively  influence  other  indicators,  such  as  Economic  Quality  and  Socio-­‐‑Cultural  and  Functional  Quality,  and  there  forth  is  an  indirect  indicator.  

Page 17: Deconstruction Management for Optimized Material Recovery: Rota Flora

HCU  -­‐‑  REAP  –  TSMC  Sustainable  Deconstruction  –  Rota  Flora    

17  

5.  Possible  Routes  for  Deconstruction    The  Rote  Flora  is  an  important  symbol  for  activists  and  other  people  in  Germany.    The  decision  for  a  deconstruction  of  this  building  would  cause  demonstrations,  which  would  escalade  to  violence  undoubtedly.    It  would  not  be  possible  to  get  the  activists  out  of  the  occupied  building  without  using  violence.    Considering  this,  deconstruction  of  the  Rota  Flora  would  be  unfavourable  for  most  of  the  citizens  in  Hamburg  and  it  is  highly  unlikely  that  the  city  will  adopt  a  strategy  to  accomplish  this.        

5.1.  Scenario  One:  The  Quickest  If  the  deconstruction  of  the  Flora  truly  happened,  it  would  have  to  happen  fast.    In  scenario  one,  the  quickest  way  will  be  described.    For  a  quick  deconstruction,  a  lot  of  vehicles  and  machines  are  needed,  and  it  has  to  be  well  planned.    The  deconstruction  companies  need  to  be  ready  as  soon  as  the  police  have  removed  the  activists  and  have  had  cleared  the  area.    A  lot  of  security  staff  is  needed  during  the  whole  deconstructing  process  to  ensure  the  safety  of  the  site  workers,  the  security  staff  itself  and  the  violent  protesters,  which  will  likely  put  themselves  and  other  members  of  the  community  in  risk  of  danger.    The  construction  site  needs  to  be  covered  from  being  seen  by  the  citizens  because  it  could  create  even  more  anger,  if  people  saw  how  “violently”  the  Flora  was  being  demolished.    All  these  arrangements  cost  a  lot  of  money,  but  higher  investments  at  the  beginning  lead  to  a  quicker  demolishment  of  the  object  and  it  saves  time,  which  means  saving  money.      

Phase  One:  The  buildings  next  to  the  Rote  Flora  need  to  be  protected,  and  the  entire  construction  site  closed  off  from  public  view.  

 Phase  Two:  The  building  should  be  demolished  with  a  wrecking  ball.      

 Phase  Three:  The  construction  waste  needs  to  be  loaded  onto  trucks  and  carried  away.    The  waste  can  be  separated  later  for  further  recycling.    The  deconstruction  could  be  performed  in  a  few  days  depending  on  the  amount  of  inserted  machines  and  the  weight  of  political  affairs.      

 Scenario  one  will  result  in  the  lowest  quality  of  recovered  material.    This  will  result  in  the  majority  of  the  recovered  masses  being  suitable  for  recycling  into  an  aggregate  for  construction  of  roads,  or  as  backfill  on  construction  sites,  or  to  be  “recovered”  in  the  form  of  energy  production  from  incineration.      

5.2.  Scenario  Two:  Recovery  of  the  Highest  Material  Quantity  and  Quality  In  this  Scenario,  we  will  try  to  deconstruct  the  building  in  a  way  that  facilitates  the  greatest  possibility  for  recycling  or  reusing  of  the  materials  and  components  in  the  building  as  possible,  with  the  focus  on  the  materials  with  the  highest  volume,  value  or  risk.    We  assume  that  most  of  the  wooden  materials,  especially  the  old  floor  and  the  beams,  are  made  of  solid  wood,  representing  a  great  value  and  potential  to  be  sold  and  reused.    

Page 18: Deconstruction Management for Optimized Material Recovery: Rota Flora

HCU  -­‐‑  REAP  –  TSMC  Sustainable  Deconstruction  –  Rota  Flora    

18  

 Similarly,  the  bricks  in  the  walls  and  the  foundation,  which  is  representing  the  biggest  material  volume  in  the  Flora,  will  have  to  be  specially  treated  if  they  are  to  be  removed  from  the  building  and  their  quality  preserved  so  that  they  can  be  reused  and  recycled  too.    

Phase  One:  At  first,  it  is  necessary  to  check  if  there  are  any  hazardous  materials  left  in  the  structure.    The  materials  have  to  be  taken  out  and  be  specially  treated  before  the  deconstruction  begins.        The  deconstruction  starts  on  the  first  floor.    To  protect  the  value  of  the  wooden  floor,  it  is  necessary  to  take  it  out  first.    It  is,  however,  necessary  to  keep  a  floor  to  walk  on,  so  additional  of  a  temporary  floor  construction  would  be  needed  before  the  deconstruction  could  continue.  

 Phase  Two:  In  the  second  phase,  valuable  materials  that  may  be  directly  reusable  and  are  certainly  recyclable  should  be  carefully  removed  in  a  manner  that  preserves  the  highest  quality.    Metals,  like  heating  systems,  piping,  copper  wires,  and  sanitary  fixtures;  window  material,  like  glass  and  frames;  and  other  elemental  fixtures  in  the  building  would  be  of  most  value  and  there  forth  importance.  These  material  should  be  separated  from  other  bulk  construction  wastes  and  picked  up  by  certain  recycling  companies.  

 Phase  Three:  After  all  high-­‐‑value  material  has  been  taken  out  of  all  three  stories,  the  non-­‐‑load-­‐‑bearing  walls  can  be  demolished  in  the  whole  building.  

 Phase  Four:  In  the  next  phase,  a  stage  has  to  be  built  on  top  of  the  new  floor,  which  was  made  of  construction  boards,  to  make  the  deconstruction  of  the  roof  and  its  valuable  wooden  beam  construction  possible.    The  next  thing  to  do  is  to  remove  the  previously  constructed  stage,  and  all  parts  of  the  first  floor.    This  construction  element  also  consists  of  reusable  wooden  beams,  which  could  be  sold  for  reuse.  

 Phase  Five:  The  load-­‐‑bearing  walls  can  be  now  deconstructed.    The  old  bricks  of  the  walls  need  to  be  kept  undamaged  for  continuing  reuse.    To  make  that  possible,  the  wall  needs  to  be  taken  down  carefully  in  bits  and  pieces.    This  phase  is  expected  to  be  the  slowest  part  of  the  entire  deconstruction.    The  ground  floor  and  the  walls  of  the  basement  have  to  be  deconstructed  by  using  the  same  procedure.    But,  it  is  questionable  whether  the  effort  of  this  difficult  deconstruction  is  worth  while  for  the  basement  because  the  moisture  of  the  surrounding  soil  could  have  made  the  bricks  unusable.    However,  the  bricks  would  still  be  recyclable  as  an  aggregate.    In  that  case,  it  is  enough  to  use  a  more  rapid  and  forceful  demolish  technique  causing  structural  damage  to  the  bricks  of  the  walls  and  the  foundation  and  then  lift  the  rubble  materials  out  of  the  pit.      

 

Page 19: Deconstruction Management for Optimized Material Recovery: Rota Flora

HCU  -­‐‑  REAP  –  TSMC  Sustainable  Deconstruction  –  Rota  Flora    

19  

This  deconstruction  method,  which  places  high  importance  in  the  oldest  and  most  historical  building  materials,  takes  time,  money  and  a  lot  of  effort;  but,  potentially  saves  energy  and  water  expenditures  associated  with  manufacturing  new  materials,  which  the  preserved  materials  will  replace  via  reuse.    It  is  assumed  that  the  financial  benefits  of  reuse  of  Scenario  Two  will  not  cover  the  increased  costs  for  the  time-­‐‑consuming  and  delegate  deconstruction.  Still,  it  shows  that  high  volumes  of  materials  can  be  removed  from  the  building  at  a  reusable  quality  if  deconstruction  plans  are  designed  with  this  aim.      

5.3.  Scenario  Three:  The  Cheapest  The  cheapest  way  of  deconstructing  the  Flora  constitutes  of  a  mix  between  keeping  some  construction  parts  for  selling  and  a  direct  demolishment.        

Phase  One:  Just  like  in  scenario  two,  the  described  materials  of  high  value  like  wood,  metals  et  cetera  should  be  taken  out  safely  for  profitable  reasons.      

 Phase  Two:  But,  instead  of  deconstructing  the  structural  parts,  which  are  made  of  bricks,  it  would  be  much  cheaper  just  to  demolish  them  in  a  quick  and  rough  way.    Later,  the  damaged  bricks  could  be  separated  and  recycled.    The  undamaged  bricks  could  be  cleaned  and  sold  for  reuse.  The  idea  is  to  demolish  construction  parts,  which  would  create  more  costs  if  conserved,  than  profit  they  will  bring  if  they  would  be  been  sold.    

 5.4.  Scenario  Four:  Most  Socially  Agreeable  

This  scenario  tries  to  find  a  compromise  for  a  deconstruction  that  could  be  accepted  by  the  society.    Providing  that  keeping  parts  of  the  Flora  at  the  actual  site  would  not  be  an  option,  the  compromise  could  be  keeping  some  special  building  parts  of  the  Flora  and  bring  it  to  another  place,  which  exhibits  the  parts  and  deals  with  it  as  a  symbol  in  a  respectful  way,  assuming  that  procedure  would  work  and  be  possible.    Parts  of  the  East  Side  Gallery  of  the  Berlin  Wall  are  a  best  practice  showing  that  this  is  a  viable  solution.    Museums  and  establishments  across  Berlin,  Germany,  Europe  and  beyond  showcase  small  sections  of  this  historic  monument.    It  is  plausible  that  there  would  be  an  eager  market  in  Hamburg  to  recover  intact,  structural  pieces  of  the  Rota  Flora  exhibiting  her  characteristic  graffiti  to  be  showcased  in  businesses,  cultural  institutions  and  possibly  people’s  homes.      

Phase  One:  In  this  scenario,  the  first  phase  would  also  be  to  remove  valuable  materials  for  reuse,  such  as  metals,  fixtures  and  valuable  wood.  

 Phase  Two:  Once  the  building  has  been  gutted  of  easily  recoverable  and  high  value  materials,  then  parts  of  the  walls  need  to  be  cut  out  and  lifted  by  a  crane.  These  processes  and  the  necessary  machines  would  cost  a  lot  of  time  and  money,  but  it  could  be  worth  while  in  order  to  avoid  bad  publicity  and  keep  peace  while  reaching  the  goal.  

 

Page 20: Deconstruction Management for Optimized Material Recovery: Rota Flora

HCU  -­‐‑  REAP  –  TSMC  Sustainable  Deconstruction  –  Rota  Flora    

20  

6.  Comparison  of  the  Four  Scenarios  for  Optimal  Sustainability    The  four  scenarios  have  been  compared  on  the  five  sustainability  indicators  prescribed  by  the  German  Federal  Ministry  for  the  Environment,  Nature  Conservation,  Building  and  Nuclear  Safety’s  (BMUB)  Guideline  for  Sustainable  Building  (2014).    The  five  indicators  are  considered  in  a  weighted  fashion  of  relevance  to  the  overall  sustainability  of  the  project  –  Ecological  Quality  (22.5%),  Economic  Quality  (22.5%),  Socio-­‐‑Cultural  and  Functional  Quality  (22.5%)  Process  Quality  (22.5%),  and  Process  Quality  (10%).    The  author’s  support  this  division  of  relevance  as  it  holds  equal  weighting  of  the  three  pillars  of  sustainability:  the  environment,  the  economy  and  society,  and  also  considers  the  Technical  Quality  as  an  equal  measure.    This  arrangement  supports  the  goals  of  the  EC  Waste  Directive  and  the  principles  of  a  Circular  Economy,  which  set  maintaining  material  value  and  longevity  as  the  greatest  priority,  and  also  compliments  the  concept  of  an  integrated  assessment  method  for  sustainable  deconstruction.    It  is  clear  that  achievement  of  sustainability  in  deconstruction  requires  intentional  and  well  thought  out,  place-­‐‑specific  planning.    As  such,  it  is  appropriate  that  Technical  Quality  is  rating  evenly  with  the  three  pillars  of  sustainability.    Process  Quality  is  a  modifier  indicator,  which  supports  the  project  by  enabling  enhanced  performance  of  other  indicators.    For  example,  reduced  deconstruction  time  directly  relates  to  saved  costs  in  labour,  equipment  and  permits,  and  also  decreased  risks  of  violent  protests.    As  such,  this  indicator  should  not  be  as  influential  as  the  other  four.      

Criteria  Weighting  

S1:  The  Quickest  

S2:  Most  Ecological  

S3:  The  Cheapest  

S4:  Socially  Agreeable  

Ecological  Quality   22.5%   1   10   5   8  Economic  Quality   22.5%   5   1   10   1  Socio-­‐‑Cultural  and  Functional  Quality  

22.5%   1   6   2   10  

Technical  Quality   22.5%   1   8   6   10  Process  Quality   10%   10   1   8   1  Summation   1   2.8   5.725   5.975   6.625           6.1.  Ecological  Quality  Ecological  Quality  is  the  measurement  of  the  amount  of  used  energy  and  produced  CO2  and  other  greenhouse  gas  (GHG)  emissions  in  the  deconstruction  process  and  in  the  recycling  chains.  This  indicator  also  measures  other  Environmental  Impact  Factors  commonly  used  as  indicators  in  Life  Cycle  Assessment  (LCA),  such  as  those  incorporated  in  the  DGNB’s  sustainability  rating  system,  shown  in  Table  6.1.    

Table  6.  Multi-­‐‑Criteria  Analysis  of  Deconstruction  Scenarios  

Page 21: Deconstruction Management for Optimized Material Recovery: Rota Flora

HCU  -­‐‑  REAP  –  TSMC  Sustainable  Deconstruction  –  Rota  Flora    

21  

Scenario  Two:  Most  Ecological  was  rated  with  the  highest  possible,  10  points  because  this  scenario  makes  it  possible  to  recycle  and  reuse  most  of  the  materials.    Scenario  One:  The  Quickest  just  gets  one  point  out  of  ten,  because  of  the  great  effort  and  energy  that  is  needed  to  treat  the  non-­‐‑separated-­‐‑construction-­‐‑waste  after  deconstruction.      

            6.2.  Economic  Quality  Economic  Quality  assesses  the  total  cost  of  the  deconstruction  project  compared  to  average  cost  for  deconstruction  in  Hamburg  (€/m3).    These  costs  include  expenses  for  renting  the  machines  and  vehicles,  labour,  permits,  and  either  waste  management  expenses  or  material  recovery  economic  benefits.  The  longer  the  deconstruction  takes  the  higher  the  costs  will  grow.        Scenario  Three:  The  Cheapest  is  awarded  10  points  because  of  the  combination  of  a  quick  demolition  and  a  carefully  deconstruction  of  just  a  few  components  with  the  highest  value;  resulting  in  both  monies  saved  and  simultaneously  earned  for  selling  the  components.    

Table  6.1.  Environmental  Impact  Categories.  Source:  Authors’  reconstruction  of  DGNB  (2014)    

Page 22: Deconstruction Management for Optimized Material Recovery: Rota Flora

HCU  -­‐‑  REAP  –  TSMC  Sustainable  Deconstruction  –  Rota  Flora    

22  

 Scenario  Two:  Most  Ecological  and  Scenario  Four:  Socially  Agreeable  are  both  awarded  the  minimum,  only  1  point,  because  it  costs  a  lot  of  money  and  time  to  deconstruct  and  separate  the  components  for  a  proper  reuse  or  recycling.         6.3.  Socio-­‐‑Cultural  and  Functional  Quality  Socio-­‐‑Cultural  and  Functional  Quality  is  an  especially  important  indicator  for  our  chosen  project.    As  already  mentioned,  the  Rota  Flora  is  more  than  just  a  building  for  the  people  of  Hamburg.    In  the  fictional  scenario  of  a  deconstruction,  a  rating  of  ten  points  means  that  a  compromise  has  been  found  that  satisfies  the  local  community  and  causes  no  violent  protests,  like  in  Scenario  Four:  Socially  Agreeable.    A  quick  and  cheap  demolishing  would  not  be  accepted,  like  in  Scenario  One:  The  Quickest  and  Scenario  Three:  The  Cheapest.        Scenario  Two:  Most  Ecological  is  awarded  at  least  five  points  because  the  sustainable  way  of  deconstruction  fits  to  a  non-­‐‑capitalism  way  of  thinking,  which  fits  to  the  basic  adjustment  of  the  activists.             6.4.  Technical  Quality  This  indicator  assesses  the  quality  and  quantity  of  materials  preserved  for  re-­‐‑use  and,  as  a  second  and  less  preferable  option,  recycled.        Scenario  Four:  Socially  Agreeable  is  awarded  a  ten  because  of  the  concept  to  bring  most  of  the  building  parts  to  another  place.    This  scenario  provides  for  the  possibility  of  reconstruction  or  the  exhibition  of  some  parts  of  the  structure.    Scenario  One:  The  Quickest  gets  only  one  point  because  of  the  quick  deconstruction,  which  would  destroy  most  of  the  components  depleting  them  of  value  and  greatly  limiting  their  potential  for  reuse.         6.5.  Process  Quality  Process  Quality  measures  the  duration  of  the  complete  deconstruction.    This  indicator  assumes  that  a  long  phase  of  deconstruction  will  lead  to  higher  costs  and  disturbance  of  the  community,  which  are  living  and  walking  close  to  the  construction  site.    A  quick  demolition,  like  in  Scenario  One:  The  Quickest,  is  awarded  10  points  and  a  slow  deconstruction,  like  in  Scenario  Two:  Most  Ecological  and  Scenario  Four:  Socially  Agreeable,  are  awarded  only  one  point.                          

Page 23: Deconstruction Management for Optimized Material Recovery: Rota Flora

HCU  -­‐‑  REAP  –  TSMC  Sustainable  Deconstruction  –  Rota  Flora    

23  

6.6.  Results    Scenario  Four:  Socially  Agreeable  is  rated  as  the  most  sustainable  option,  with  a  strong  lead  on  the  other  scenarios.    This  scenario  scores  well  above  average  in  the  categories  of  Ecological  Quality,  Socio-­‐‑Cultural  and  Functional  Quality,  and  Technical  Quality  because  it  upholds  two  fundamental  principles  of  sustainability:  preservation  and  inclusion.    In  comparison,  Scenario  One:  The  Quickest  rates  as  being  less  than  half  as  sustainable  as  Scenario  Four:  Socially  Agreeable  because  it  does  not  prioritize  material  value  or  the  social  importance  of  the  building.    

   Figure  6.6.  Summary  of  Multi-­‐‑Criteria  Assessment  of  Deconstruction  

Scenarios      

Page 24: Deconstruction Management for Optimized Material Recovery: Rota Flora

HCU  -­‐‑  REAP  –  TSMC  Sustainable  Deconstruction  –  Rota  Flora    

24  

7.  Conclusion:  Planned  Deconstruction  for  Enhanced  Sustainability    The  best  solution,  according  to  our  rating  system,  is  a  mixture  of  all  four  scenarios  reflecting  compromises.    Considering  the  high  cultural  significance  as  well  as  the  history  of  violent  protests  tied  to  the  Rota  Flora,  this  analysis  assumes  that  the  acceptance  by  the  society  is  possibly  more  important  for  the  city  than  money,  time  or  ecology.      Even  though  Scenario  Four:  Socially  Agreeable  clearly  out-­‐‑performs  the  other  scenarios  in  regards  to  overall  project  sustainability,  the  scenario  is  rated  the  worst  possible  score  in  Economical  Quality,  which  is  one  of  three  basic  pillars  of  sustainability.    The  authors  reflect  upon  this  as  an  opportunity  to  further  improve  the  project.    In  this  case,  the  deconstruction  Scenario  Five:  Public  Participation  should  be  the  same  as  Scenario  Four:  Socially  Agreeable,  but  enhanced  with  a  new  model  to  balance  the  economic  costs  of  preserving  parts  of  the  building.    Potential  funding  schemes  include  donations,  Crowd  Funding,  crown  funding  via  festivals  or  other  cultural  events,  or  a  direct  subsidy  from  the  city.    Therefore,  Hamburg  and  some  charity  organisations  could  handle  the  higher  costs  and  the  duration  of  the  deconstruction.    Under  this  proposal,  Scenario  Five:  Public  Participation  would  reach  93%  of  the  possible  points,  showing  high  levels  of  sensitivity  to  all  sustainability  parameters.                                                        

Page 25: Deconstruction Management for Optimized Material Recovery: Rota Flora

HCU  -­‐‑  REAP  –  TSMC  Sustainable  Deconstruction  –  Rota  Flora    

25  

Resources  Ahnert,  Rudolf;  Heinz,  Karl.    (2009)    Typische  Baukonstruktionen  von  1860  bis  1960.    Pg.47    BMUB  –  German  Federal  Ministry  for  the  Environment,  Nature  Conservation,  Building  and  

Nuclear  Safety  (2014)    Guideline  for  Sustainable  Building    BREEAM  –  Building  Research  Establishment  Environmental  Assessment  Methodology  (2014)  

Green  Buildings  Pay:  Investors  and  Developers  are  Using  Sustainability  to  Drive  Value    Buhck  Gruppe  (2016)    Entsorgung  von  Bauschutt  in  Hamburg  und  Norddeutschland.      

< http://www.buhck.de/buhck/entsorgung/abfallarten/bauschutt/bauschutt.php  >    Concrete  Network  (2016)  Recycling  Concrete  

 < http://www.concretenetwork.com/concrete/demolition/recycling_concrete.htm  >    Deutschlandfunk  (2016)    Recycling:  Gips-­‐‑Abfälle  neu  verwertet.      

< http://www.deutschlandfunk.de/recycling-­‐‑gips-­‐‑abfaelle-­‐‑neu-­‐‑verwertet.676.de.html?dram:article_id=307646>  

 DGNB  –  German  Sustainable  Building  Council  (2014)  Excellence  Defined:  Sustainable  Building  

with  a  System’s  Approach    eBay  (2015)    Das  sollten  Sie  als  Hausbauer  über  Stahl-­‐‑Träger  wissen  

<http://www.ebay.de/gds/Das-­‐‑sollten-­‐‑Sie-­‐‑als-­‐‑Hausbauer-­‐‑ueber-­‐‑Stahl-­‐‑Traeger-­‐‑wissen-­‐‑/10000000178524139/g.html  >

 EC  -­‐‑  European  Commission  (2014)  “Towards  a  Circular  Economy:  A  Zero  Waste  Programme  for  

Europe”  Communication  from  the  Commission  to  the  European  Parliament,  The  Council,  The  European  Economic  and  Social  Committee  and  the  Committee  of  the  Regions.      

 EC  -­‐‑  European  Commission  (2008)    Waste  Directive.  2008/98/EC    Entsorgung  (2016)    Estrich  fachgerecht  entsorgen.    

 < http://www.entsorgung-­‐‑blog.de/2010/09/estrich-­‐‑fachgerecht-­‐‑entsorgen/>    HAFENHOLZ  (2016)  < http://www.hafenholz.de/home.html  >      ISO  –  International  Standard  Organization  (2008)  “Part  5.  Life-­‐‑Cycle  Costing”  Buildings  and  

Constructed  Assets:  Service  Life  Planning.  ISO  15686-­‐‑5:2008    Otto  Dörner  (2016)    “Sie  möchten  Dachpappe  entsorgen?”    <http://www.doerner  

shop.de/container/entsorgung-­‐‑ratgeber/abfallarten-­‐‑glossar/dachpappe/>    Reiling  Unternehmensgruppe  (2016)  Wood  Recycling.    < http://reiling.de/holz-­‐‑recycling/  >    Siventas  GmbH  (2016)    Altfenster.    

 <https://www.wer-­‐‑entsorgt-­‐‑was.de/entsorgungstipps/abfall/Altfenster.html>    UNEP  –  United  Nations  Environmental  Programme  (2015)    The  United  Nations  Environmental  

Programme  and  the  2030  Agenda:  Global  Action  for  People  and  the  Planet    VLEI  –  Verwertung  Logistik  Entsorgung  Industrieberatung  (2016)  “Verwertung  von  

Dachbahnen”  <http://www.vlei.de/leistungen/verwertung-­‐‑von-­‐‑dachbahnen>